

The BlueJ Tutorial

Version 4.0
for BlueJ Version 4.x

Michael Kölling
King’s College London

Copyright © M. Kölling

 Table of contents

Copyright © M. Kölling 2

Contents

1	 Foreword 4	
1.1	 About BlueJ ..4	
1.2	 Scope and audience ..4	
1.3	 Copyright, licensing and redistribution ...4	
1.4	 Feedback ..5	

2	 Installation 6	
2.1	 Installation on Windows ...6	
2.2	 Using the Standalone package ...6	
2.3	 Installation on MacOS ...6	
2.4	 Installation on Debian and Ubuntu ..7	
2.5	 Installation on other systems ..7	
2.6	 Installation problems ..7	

3	 Getting started – edit / compile / execute 8	
3.1	 The BlueJ Main Window ..8	
3.2	 Opening a project ...9	
3.3	 Creating objects ...9	
3.4	 Execution ..11	
3.5	 Editing a class ..13	
3.6	 Compilation ..13	
3.7	 Navigating compilation errors ...14	
3.8	 Viewing class documentation ...15	

4	 Doing a bit more... 16	
4.1	 Inspection ...16	
4.2	 Passing objects as parameters ...18	

5	 Creating a new project 20	
5.1	 Creating the project directory ..20	
5.2	 Creating classes ...20	
5.3	 Creating dependencies ...21	
5.4	 Removing elements ...21	

6	 Using the code pad 22	
6.1	 Showing the code pad ...22	
6.2	 Simple expression evaluation ...23	
6.3	 Receiving objects ..24	
6.4	 Executing statements ..25	

 Table of contents

Copyright © M. Kölling 3

6.5	 Multi-line statements and sequences of statements ..25	
6.6	 Working with variables ..25	
6.7	 Command history ...26	

7	 Debugging 27	
7.1	 Setting breakpoints ...27	
7.2	 Stepping through the code ..29	
7.3	 Inspecting variables ...29	
7.4	 Halt and terminate ...30	

8	 Creating stand-alone applications 31	

9	 Other operations 33	
9.1	 Opening non-BlueJ packages in BlueJ ...33	
9.2	 Adding existing classes to your project ..33	
9.3	 Calling main and other static methods ..33	
9.4	 Generating documentation ...34	
9.5	 Working with libraries ...34	
9.6	 Creating objects from library classes ..34	

10	 Editor Tips and Tricks 36	
10.1	 Changing key bindings ...36	
10.2	 Stand-out comments ...36	
10.3	 Adjust editor preferences ...36	

11	 Just the summaries 37	

Copyright © M. Kölling 4

1 Foreword

1.1 About BlueJ
This tutorial is an introduction to using the BlueJ programming environment. BlueJ is
a Java™ development environment specifically designed for teaching at an
introductory level. It was designed and implemented by the BlueJ team at King’s
College, London.
More information about BlueJ is available at http://www.bluej.org.

1.2 Scope and audience
This tutorial is aimed at people wanting to familiarize themselves with the capabilities
of the environment. It does not explain design decisions underlying the construction of
the environment or the research issues behind it.
This tutorial is not intended to teach Java. Beginners of Java programming are advised
to also study an introductory Java textbook or follow a Java course.
This is not a comprehensive environment reference manual. However, it does cover a
large portion of BlueJ’s functionality. Further information about particular features can
be found in other documents, including the guide to Unit testing in BlueJ and the BlueJ
Teamwork Tutorial, which are available from the BlueJ website.

Every section starts with a one-line summary sentence. This allows users already
familiar with parts of the system to decide whether they want to read or skip each
particular section. Section 11 repeats just the summary lines as a quick reference.

1.3 Copyright, licensing and redistribution
This tutorial is available 'as is', free of charge to anyone for use and non-commercial
re-distribution. Disassembly of the system is prohibited.
BlueJ is distributed under the GNU General Public License version 2.0 with Classpath
Exception.
The copyright © for BlueJ is held by M. Kölling and J. Rosenberg.

 Foreword

Copyright © M. Kölling 5

1.4 Feedback
Comments, questions, corrections, criticisms and any other kind of feedback
concerning the BlueJ system or this tutorial are very welcome and actively encouraged.
Please mail to Michael Kölling (mik@bluej.org).

Copyright © M. Kölling 6

2 Installation

BlueJ is distributed in five different formats: one installable package for Windows
systems, one “standalone” (installation free) package for Windows, one for MacOS,
one for Debian-based systems (including Ubuntu), and one for all other systems. All of
these can be downloaded from the BlueJ website at http://www.bluej.org/. Installing it
is quite straightforward.

2.1 Installation on Windows
The distribution file for Windows systems is called Bluej-windows-xxx.msi, where xxx
is a version number. For example, the BlueJ version 4.1.1 distribution is named BlueJ-
windows-411.msi. Double-click the installer to launch it.
The installer lets you select a directory to install to. It will also offer the option of
installing a shortcut in the start menu and on the desktop. In general, you should accept
the default choice for all options presented during installation unless you have reason
to do otherwise. Once installed, you can launch BlueJ from the start menu or desktop
icon, according to your choices during installation. The Windows installer includes a
suitable Java JDK (development kit and runtime environment) for running BlueJ.
BlueJ 4+ requires Windows 7 or later. For up-to-date requirements for the latest version
of BlueJ, please check the website.

2.2 Using the Standalone package
The standalone package also runs on Windows, but does not require installation and
can be run from a USB drive, making it a good solution for use on “locked down”
computers which prevent installation of new software. The download is a zip file, the
contents of which must be extracted before running BlueJ. (Do not try to run BlueJ
directly from within the zip file without extracting it – this does not work).
The standalone version of BlueJ saves user preferences in the directory to which it is
extracted. If this is on a USB drive, this means that the preferences can be carried from
one computer to the next. A suitable Java JDK for running BlueJ is included in the
package.

2.3 Installation on MacOS
The distribution file for MacOS is called BlueJ-mac-xxx.zip, where xxx is a version
number. For example, the BlueJ version 4.1.1 distribution is named BlueJ-mac-411.zip.
It may be extracted automatically after download; if not, double-click it to extract. The

 Installation

Copyright © M. Kölling 7

zip contains a BlueJ folder, which itself contains the application and the examples
folder; you may wish to drag the application to your Applications folder and/or the
dock. No further installation is necessary; double-click the application to launch it.

2.4 Installation on Debian and Ubuntu
The Debian-based installer can be used on several distributions that use the Debian
package format, including Debian, Ubuntu and possibly others (if it does not work for
your favourite distribution, use the generic “other” installer instead). On many systems,
you can simply double-click the package after downloading it to install it. On Debian,
you can install via the terminal by first changing to the directory where you downloaded
the package, and executing the following command:

su –c dpkg –i BlueJ-linux-411.deb

Make sure to specify the package name correctly.
Once installed, BlueJ should be accessible via the menu in your desktop.

2.5 Installation on other systems
The generic installer is available for installation on other systems. It requires a Java
JDK to be installed. BlueJ 4.x requires JDK 8 (JDK 9 is not supported).
The general distribution file for is an executable jar file. It is called Bluej-generic-
xxx.jar, where xxx is a version number. For example, the BlueJ version 4.1.1
distribution is named Bluej-generic-411.jar.

Run the installer by executing the following command. NOTE: For this example, I use
the distribution file Bluej-generic-411.jar – you need to use the file name of the file
you’ve got (with the correct version number).

<j2se-path>/bin/java -jar Bluej-generic-411.jar

<j2se-path> is the directory, where J2SE SDK was installed.

A window opens, letting you choose the BlueJ installation directory and the Java
version to be used to run BlueJ.

Click Install. After finishing, BlueJ should be installed.

2.6 Installation problems
If you have any problems, check the Frequently Asked Questions (FAQ) on the BlueJ
web site (http://www.bluej.org/faq.html). If you cannot find a solution to your problem
there, you can contact the support team by filling in the online support form
(https://bluej.org/support.html).

Copyright © M. Kölling 8

3 Getting started – edit / compile / execute

3.1 The BlueJ Main Window
Start BlueJ. When you start BlueJ for the first time, you will be prompted to choose
whether you wish to participate in an anonymous data collection for research purposes.
After making a choice, the main window should appear. On this first start, no projects
are open; in the future, BlueJ will automatically open the project that you were using
previously.

Figure 1: The BlueJ main window

 Getting started – edit / compile / execute

Copyright © M. Kölling 9

3.2 Opening a project
Summary: To open a project, select Open from the Project menu.

BlueJ projects, like standard Java packages, are directories containing the files included
in the project. Some example projects are included with the standard BlueJ distribution
in the examples directory. You can find the examples directory in the BlueJ installation
directory (on a Mac, the examples can be found alongside the BlueJ application).
For this tutorial section, open the project people, which is included in the examples.
After starting BlueJ, use the Project – Open... menu command to select and open the
project. (On MacOS, navigate to the examples folder and then double-click the
“people” folder; on Windows and Linux, navigate into the “people” folder and click
Open).

After opening the project, you should see something similar to the window shown in
Figure 1. The window might not look exactly the same on your system, but the
differences should be minor.

3.3 Creating objects
Summary: To create an object, select a constructor from the class popup menu.

One of the fundamental characteristics of BlueJ is that you cannot only execute a
complete application, but you can also directly interact with single objects of any class
and execute their public methods. An execution in BlueJ is usually done by creating an
object and then invoking one of the object’s methods. This is very helpful during
development of an application – you can test classes individually as soon as they have
been written. There is no need to write the complete application first.

Side note: Static methods can be executed directly without creating an object first. One
of the static methods may be “main”, so we can do the same thing that normally happens
in Java applications – starting an application by just executing a static main method.
We’ll come back to that later. First, we’ll do some other, more interesting things which
cannot normally be done in Java environments.

The squares you see in the centre part of the main window (labelled Database, Person,
Staff and Student) are icons representing the classes involved in this application. Notice
the grey lines across the class images – these mean that the classes have not been
compiled; press the “Compile” button to compile them. (If the grey lines aren’t there,
this means the classes are already compiled – no need to worry!).

You can get a menu with operations applicable to a class by clicking on the class icon
with the right mouse button (Macintosh: ctrl-click1) (Figure 2). The operations shown

1 Whenever we mention a right-click in this tutorial, Macintosh users should read this as ctrl-click.

 Getting started – edit / compile / execute

Copyright © M. Kölling 10

are new operations with each of the constructors defined for this class (first) followed
by some operations provided by the environment.

Figure 2: Class operations (popup menu)

We want to create a Staff object, so you should right-click the Staff icon (which pops
up the menu shown in Figure 2). The menu shows two constructors to create a Staff
object, one with parameters and one without. First, select the constructor without
parameters. The dialogue shown in Figure 3 appears.

Figure 3: Object creation without parameters

 Getting started – edit / compile / execute

Copyright © M. Kölling 11

This dialogue asks you for a name for the object to be created. At the same time, a
default name (staff1) is suggested. This default name is good enough for now, so just
click OK. A Staff object will be created.
Once the object has been created it is placed on the object bench (Figure 4). This is all
there is to object creation: select a constructor from the class menu, execute it and
you’ve got the object on the object bench.

Figure 4: An object on the object bench

You might have noticed that the class Person is labelled <<abstract>> (it is an abstract
class). You will notice (if you try) that you cannot create objects of abstract classes (as
the Java language specification defines).

3.4 Execution
Summary: To execute a method, select it from the object popup menu.

Now that you have created an object, you can execute its public operations. (Java calls
the operations methods.) Click with the right mouse button on the object and a menu
with object operations will pop up (Figure 5). The menu shows the methods available
for this object and two special operations provided by the environment (Inspect and
Remove). We will discuss those later. First, let us concentrate on the methods.

Figure 5: The object menu

 Getting started – edit / compile / execute

Copyright © M. Kölling 12

You see that there are methods setRoom and getRoom which set and return the room
number for this staff member. Try calling getRoom. Simply select it from the object’s
menu and it will be executed. A dialogue appears showing you the result of the call
(Figure 6). In this case the name says “(unknown room)” because we did not specify a
room for this person.

Figure 6: Display of a function result

Methods inherited from a superclass are available through a submenu. At the top of the
object’s popup menu there are two submenus, one for the methods inherited from
Object and one for those from Person (Figure 5). You can call Person methods (such
as getName) by selecting them from the submenu. Try it. You will notice that the
answer is equally vague: it answers “(unknown name)”, because we have not given our
person a name.

Now let us try to specify a room number. This will show how to make a call that has
parameters. (The calls to getRoom and getName had return values, but no parameters).
Call the function setRoom by selecting it from the menu. A dialogue appears prompting
you to enter a parameter (Figure 7).

Figure 7: Function call dialogue with parameters

At the top, this dialogue shows the interface of the method to be called (including
comment and signature). Below that is a text entry field where you can enter the

 Getting started – edit / compile / execute

Copyright © M. Kölling 13

parameter. The signature at the top tells us that one parameter of type String is expected.
Enter the new room as a string (including the quotes) in the text field and click OK.

This is all – since this method does not return a parameter there is no result dialogue.
Call getRoom again to check that the room really has changed.

Play around with object creation and calling of methods for a while. Try calling a
constructor with arguments and call some more methods until you are familiar with
these operations.

3.5 Editing a class
Summary: To edit the source of a class, double-click its class icon.

So far, we have dealt only with an object’s interface – now, it’s time to look inside.
You can see the implementation (source code) of a class by selecting Open Editor from
the class operations. (Reminder: right-clicking the class icon shows the class
operations.) Double-clicking the class icon is a shortcut to the same function.

Side note: BlueJ supports two programming languages: Java and Stride. The editors for
each language are quite different from each other. In this tutorial, we will focus on the
Java editor.

The editor is not described in much detail in this tutorial, but it is straightforward to
use. Open an editor for the Staff class. Find the implementation of the getRoom method.
It returns, as the name suggests, the room number of the staff member. Let us change
the method by adding the prefix “room” to the function result (so that the method
returns, say, “room M.3.18” instead of just “M.3.18”). We can do this by changing the
line

return room;

to
return "room " + room;

BlueJ supports full, unmodified Java, so there is nothing special about how you
implement your classes.

3.6 Compilation
Summary: To compile a class, click the Compile button in the editor. To compile a
project, click the Compile button in the project window.

Previously we compiled all classes in the “people” project using the compile button in
the main window. You can also compile classes directly from the editor.

After inserting the text (before you do anything else), check the project overview (the
main window). You will notice that the class icon for the Staff class has changed: it is

 Getting started – edit / compile / execute

Copyright © M. Kölling 14

striped now. The striped appearance marks classes that have not been compiled since
the last change. Back to the editor.

In the toolbar at the top of the editor are some buttons with frequently used functions.
One of them is Compile; this can be used to compile the class (and any classes it
depends on). Click the Compile button now. If you made no mistake, a message should
appear in the information area at the bottom of the editor notifying you that the class
has been compiled. If you made a mistake that leads to a syntax error, the line of the
error is highlighted and an error message is displayed in the information area. (In case
your compilation worked first time, try to introduce a syntax error now – such as a
missing semicolon – and compile again, just to see what it looks like).

After you have successfully compiled the class, close the editor.

Side note: There is no need to explicitly save the class source. Sources get automatically
saved whenever it is appropriate (e.g. when the editor is closed or before a class is
compiled). You can explicitly save if you like (there is a function in the editor's Class
menu), but it is really only needed if your system is really unstable and crashes frequently
and you are worried about losing your work.

You may notice that the object bench is empty again. Objects are removed on
compilation.

3.7 Navigating compilation errors
Summary: Press “Compile” to move from one error to the next and see the
corresponding error message.

Open the editor again, introduce an error in the source file, and compile. The cursor
will be moved to the location of the error, which will be marked with a red underline,
and the error message will be displayed in text floating just nearby (Figure 8).

Figure 8: A compiler error displayed in the editor

You will also see a red mark in the grey border area at the left-hand-side of the editor
window.
If there are multiple errors, they are displayed as separate red underlines and border
marks, however only the selected error has its message displayed. To move from one
error to the next, press the Compile button again. If an error underline is visible, you
can also move the cursor to it or hover the mouse over it to show the corresponding
error message.

 Getting started – edit / compile / execute

Copyright © M. Kölling 15

3.8 Viewing class documentation
Summary: To view the documentation for a class, choose “Documentation” from the
drop-down menu in the editor toolbar.

You can view the documentation for a class, as generated by the Javadoc tool from the
source code, by choosing Documentation from the drop-down menu on the top right-
hand side of the editor (in the toolbar). The documentation is generated on-the-fly.
Switch back to the source code by choosing Source code from the drop-down menu.

Copyright © M. Kölling 16

4 Doing a bit more...

In this section, we will go through a few more things you can do in the environment.
Things which are not essential, but very commonly used.

4.1 Inspection
Summary: Object inspection allows some simple debugging by showing an object’s
internal state.

When you executed methods of an object, you might have noticed the Inspect operation
which is available on objects in addition to user defined methods (Figure 5). This
operation allows checking of the state of the instance variables (“fields”) of objects.
Try creating an object with some user defined values (e.g. a Staff object with the
constructor that takes parameters). Then select the Inspect from the object menu. A
dialogue appears displaying the object fields, their types and their values (Figure 9).

Figure 9: Inspection dialogue

Inspection is useful to quickly check whether a mutator operation (an operation that
changes the state of the object) was executed correctly. Thus, inspection is a simple
debugging tool.
In the Staff example, all fields are simple types (either non-object types or strings). The
value of these types can be shown directly. You can immediately see whether the
constructor has done the right assignments.

In more complex cases, the values of fields might be references to user-defined objects.
To look at such an example we will use another project. Open the project people2,
which is also included in the standard BlueJ distribution. The people2 desktop is shown
in Figure 10. As you can see, this second example has an Address class in addition to
the classes seen previously. One of the fields in class Person is of the user-defined type
Address.

 Doing a bit more...

Copyright © M. Kölling 17

Figure 10: The people2 project window

For the next thing that we want to try out – inspection with object fields – compile all
classes, create a Staff object, and then call the setAddress method of this object (you’ll
find it in the Person submenu). Enter an address. Internally, the Staff code creates an
object of class Address and stores it in its address field.

Now, inspect the Staff object. The resulting inspection dialogue is shown in Figure 11.
The fields within the Staff object now include address. As you can see, its value is
shown as an arrow, which signifies a reference to another object. Since this is a
complex, user-defined object, its value cannot be shown directly in this list. To examine
the address further, select the address field in the list and click the Inspect button in the
dialogue. (You can also double-click the address field.) Another inspection window is
opened in turn, showing the details of the Address object (Figure 12).

 Doing a bit more...

Copyright © M. Kölling 18

Figure 11: Inspection with object reference

Figure 12: Inspection of internal object

If the selected field is public then, instead of clicking Inspect, you could also select the
address field and click the Get button. This operation places the selected object on the
object bench. There you can examine it further by making calls to its methods.

4.2 Passing objects as parameters
Summary: An object can be passed as a parameter to a method call by clicking on the
object icon.

Objects can be passed as parameters to methods of other objects. Let us try an example.
Create an object of class Database. (You will notice that the Database class has only
one constructor which takes no parameters, so construction of an object is straight
forward.) The Database object has the ability to hold a list of persons. It has operations
to add person objects and to display all persons currently stored. (Calling it Database
is actually a bit of an exaggeration!)

 Doing a bit more...

Copyright © M. Kölling 19

If you don’t already have a Staff or Student object on the object bench, create one of
those as well. For the following, you need a Database object and a Staff or Student
object on the object bench at the same time.
Now call the addPerson method of the Database object. The signature tells you that a
parameter of type Person is expected. (Remember: the class Person is abstract, so there
are no objects which are directly of type Person. But, because of subtyping, Student
and Staff objects can be substituted for person objects; so, it is legal to pass in a Student
or Staff where a Person is expected.) To pass the object which you have on your object
bench as a parameter to the call you are making, you could enter its name into the
parameter field or, as a shortcut, just click on the object. This enters its name into the
method call dialogue. Click OK and the call is made. Since there is no return value for
this method, we do not immediately see a result. You can call the listAll method on the
Database object to check that the operation really was performed. The listAll operation
writes the person information to standard output. You will notice that a text terminal
opens automatically to display the text.
Try this again with more than one person entered into the “database”.

Copyright © M. Kölling 20

5 Creating a new project

This chapter takes you to a quick tour of setting up a new project.

5.1 Creating the project directory
Summary: To create a project, select New... from the Project menu.

To create a new project, select Project – New... from the menu. A file selection dialogue
opens that lets you specify a name and location for the new project. Try that now. You
can choose any name for your project. After you click OK, a directory will be created
with the name you specified, and the main window shows the new, empty project.

5.2 Creating classes
Summary: To create a class, click the New Class button and specify the class name.

You can now create your classes by clicking the New Class button on the project tool
bar. You will be asked to supply a name for the class - this name has to be a valid Java
identifier.
You can also choose from four types of classes: abstract, interface, applet or “standard”.
This choice determines what code skeleton gets initially created for your class. You can
change the type of class later by editing the source code (for example, by adding the
“abstract” keyword in the code).

After creating a class, it is represented by an icon in the diagram. If it is not a standard
class, the type (interface, abstract, or applet) is indicated in the class icon. When you
open the editor for a new class you will notice that a default class skeleton has been
created - this should make it easy to get started. The default code is syntactically correct.
It can be compiled (but it doesn’t do much). Try creating a few classes and compile
them.

 Creating a new project

Copyright © M. Kölling 21

5.3 Creating dependencies
Summary: To create an inheritance arrow, click the arrow button and drag the arrow
in the diagram, or just write the source code in the editor; “uses” dependency arrows
are generated from the source code.

The class diagram shows dependencies between classes in the form of arrows.
Inheritance relationships (“extends” or “implements”) are shown as arrows with a
hollow arrow head; “uses” relationships are shown as dashed arrows with an open head.

The displayed dependency arrows always match the source code. For “uses”
relationships, the source code of one class must refer to the other class by name in order
for an arrow to be displayed. Inheritance relationships can be created either by editing
the code and inserting an “extends” (or “implements”) clause at the appropriate point,
or by clicking the arrow button and then drawing an arrow following the on-screen
prompts. In this case the appropriate changes will be made to the code automatically
and will be visible in the editor.

5.4 Removing elements
Summary: To remove a class or an inheritance arrow, select the delete function from
its popup menu.

To remove a class from the diagram, select the class and then select Delete from the
Edit menu. You can also select Delete from the class’s popup menu. To remove an
inheritance arrow, right-click the arrow to open its popup menu and then select Delete.

Copyright © M. Kölling 22

6 Using the code pad

The BlueJ code pad allows quick and easy evaluation of arbitrary snippets of Java code
(expressions and statements). Thus, the code pad can be used to investigate details of
Java semantics and to illustrate and experiment with Java syntax.

6.1 Showing the code pad
Summary: To start using the code pad, select Show Code Pad from the View menu.

The code pad is not shown by default. To show it, use the Show Code Pad item from
the View menu. The main window will now include the code pad interface at the lower
right, next to the object bench (Figure 13). Both the horizontal and vertical boundaries
of the code pad and object bench can be adjusted to change their sizes.
The code pad area can now be used to enter expressions or statements. On pressing
Enter, each line will be evaluated and a result may be displayed.

 Using the code pad

Copyright © M. Kölling 23

Figure 13: The main window with code pad shown

6.2 Simple expression evaluation
Summary: To evaluate Java expressions, just type them into the code pad.

The code pad can be used to evaluate simple expressions. Try entering, for example:
4 + 45

"hello".length()

Math.max(33, 4)

(int) 33.7

javax.swing.JOptionPane.showInputDialog(null, "Name:")

Expressions can refer to standard Java values and objects, as well as classes from the
current project. The code pad will display the result value, followed by its type (in
parenthesis), or an error message if the expression is incorrect.

Side note: Expressions in Java do not end with a semi-colon. Adding a semi-colon causes
the expression to be interpreted as a statement, which will give an error if it is not a valid
statement, or cause it to execute without showing a result.

 Using the code pad

Copyright © M. Kölling 24

You can also use the objects you have on the object bench. Try the following: place an
object of class student onto the object bench (using the class popup menu as described
earlier). Name it student1.

In the code pad, you can now type
student1.getName()

Similarly, you can refer to all available methods from your project classes.

6.3 Receiving objects
Summary: To make objects from the code pad available on the object bench, click the
small object icon and supply a name for the object reference.

Some expression results are objects, rather than simple values. In this case, the result is
shown as <object reference>, followed by the type of the object, and a small object
icon is painted next to the result line (Figure 14).

Figure 14: An object as a result of a code pad expression

If the result is a string, the string value will be displayed as the result, but you will also
see the small object icon (since strings are objects).

Some expressions you could try to create objects are
new Student()

"marmelade".substring(3,8)

new java.util.Random()

"hello" + "world"

The small object icon can now be used to continue working with the resulting object.
You can point to the icon and click it, providing a name when prompted, to place it on
the object bench. It will then be available for further calls to its methods, either via its
popup menu or via the code pad.

 Using the code pad

Copyright © M. Kölling 25

6.4 Executing statements
Summary: Statements that are typed into the code pad are executed.

You can also use the code pad to execute statements (that is: Java instructions that do
not return a value). Try these, for example:

System.out.println("Gurkensalat");

System.out.println(new java.util.Random().nextInt(10));

Statements usually end with a semicolon (an exception is statement blocks surrounded
by curly braces).

6.5 Multi-line statements and sequences of statements
Summary: Use shift-Enter at the end of a line to enter multi-line statements.

You can enter sequences of statements or statements spanning multiple lines by using
shift-Enter at the end of the input line. Using shift-enter will move the cursor to the start
of the next line, but not (yet) execute the input. At the end of the last input line type
Enter to evaluate all lines together. Try, for example, a for loop:

for (int i=0; i<5; i++) {
 System.out.println("number: " + i);
}

6.6 Working with variables
Summary: Local variables can be declared and used in the codepad. The names of
objects on the object bench serve as instance fields.

Variables can be declared in the code pad using the regular Java syntax (note that since
a variable declaration is a statement, it requires a trailing semi-colon). Once declared,
the variable can be referred to and assigned in subsequent statements. Variables
declared this way behave much like local variables in a method, except that they are
automatically initialised (to 0, false, or null, depending on their type) if they are not
assigned a value as part of their declaration.

You can think of objects on the object bench as instance fields. You cannot define any
new instance fields from within a method body (or from within the code pad), but you
can refer to the instance fields and make calls to the objects held in them.

 Using the code pad

Copyright © M. Kölling 26

6.7 Command history
Summary: Use up-arrow and down-arrow keys to make use of the input history.

The code pad keeps a history of your previously used inputs. Using the up or down
arrow keys, you can easily recall previous input lines, which can be edited before being
reused.

Copyright © M. Kölling 27

7 Debugging

This section introduces the most important aspects of the debugging functionality in
BlueJ. In talking to computing teachers, we have very often heard the comment that
using a debugger in first year teaching would be nice, but there is just no time to
introduce it. Students struggle with the editor, compiler and execution; there is no time
left to introduce another complicated tool.
That’s why we have decided to make the debugger as simple as possible. The goal is to
have a debugger that you can explain in 15 minutes, and that students can just use from
then on without further instruction. Let’s see whether we have succeeded.

First of all, we have reduced the functionality of traditional debuggers to three tasks:

• setting breakpoints
• stepping through the code
• inspecting variables

In return, each of the three tasks is very simple. We will now try out each one of them.

To get started, open the project debugdemo, which is included in the examples directory
in the distribution, and make sure the classes within it are compiled. This project
contains a few classes for the sole purpose of demonstrating the debugger functionality
– they don’t make a lot of sense otherwise.

7.1 Setting breakpoints
Summary: To set a breakpoint, click in the breakpoint area to the left of the text in the
editor.

Setting a breakpoint lets you interrupt the execution at a certain point in the code. When
the execution is interrupted, you can investigate the state of your objects. It often helps
you to understand what is happening in your code.
In the editor, to the left of the text, is the breakpoint area (Figure 15). You can set a
breakpoint by clicking into it. A small stop sign appears to mark the breakpoint, and
the line background changes to red. Try this now. Open the class Demo, find the method
loop, and set a breakpoint somewhere in the for loop. The stop sign should appear in
your editor.

 Debugging

Copyright © M. Kölling 28

Figure 15: A breakpoint

When the line of code is reached that has the breakpoint attached, execution will be
interrupted. Let’s try that now.

Create an object of class Demo and call the loop method with a parameter of, say, 10.
As soon as the breakpoint is reached, the editor window pops up, showing the current
line of code, and a debugger window pops up. It looks something like Figure 16.

Figure 16: The debugger window

The highlight in the editor shows the line that will be executed next. (The execution is
stopped before this line was executed.)

 Debugging

Copyright © M. Kölling 29

7.2 Stepping through the code
Summary: To single-step through your code, use the Step and Step Into buttons in the
debugger.

Now that we have stopped the execution (which convinces us that the method really
does get executed and this point in the code really does get reached), we can single-step
through the code and see how the execution progresses. To do this, repeatedly click on
the Step button in the debugger window. You should see the source line in the editor
changing (the highlight moves with the line being executed). Every time you click the
Step button, one single line of code gets executed and the execution stops again. Note
also that the values of the variables displayed in the debugger window change (for
example the value of sum.) So you can execute step by step and observe what happens.
Once you get tired of this, you can click on the breakpoint again to remove it, and then
click the Continue button in the debugger to restart the execution and continue
normally.
Let’s try that again with another method. Set a breakpoint in class Demo, method
carTest(), in the line reading

places = myCar.seats();

Call the method. When the breakpoint is hit, you are just about to execute a line that
contains a method call to the method seats() in class Car. Clicking Step would step over
the whole line. Let’s try Step Into this time. If you step into a method call, then you
enter the method and execute that method itself line by line (not as a single step). In
this case, you are taken into the seats() method in class Car. You can now happily step
through this method until you reach the end and return to the calling method. Note how
the debugger display changes.
Step and Step Into behave identically if the current line does not contain a method call.

7.3 Inspecting variables
Summary: Inspecting variables is easy – they are automatically displayed in the
debugger.

When you debug your code, it is important to be able to inspect the state of your objects
(local variables and instance variables).
Doing it is trivial – most of it you have seen already. You do not need special commands
to inspect variables; static variables, instance variables of the current object and local
variables of the current method are always automatically displayed and updated.

You can select methods in the call sequence to view variables of other currently active
objects and methods. Try, for example, a breakpoint in the carTest() method again. On
the left side of the debugger window, you see the call sequence. It currently shows

Car.seats
Demo.carTest

 Debugging

Copyright © M. Kölling 30

This indicates that Car.seats was called by Demo.carTest. You can select
Demo.carTest in this list to inspect the source and the current variable values in this
method.
If you step past the line that contains the new Car(...) instruction, you can observe
that the value of the local variable myCar is shown as <object reference>. All values
of object types (except for Strings) are shown in this way. You can inspect this variable
by double-clicking on it. Doing so will open an object inspection window identical to
those described earlier (section 4.1). There is no real difference between inspecting
objects here and inspecting objects on the object bench.

7.4 Halt and terminate
Summary: Halt and Terminate can be used to halt an execution temporarily or
permanently.

Sometimes a program is running for a long time, and you wonder whether everything
is okay. Maybe there is an infinite loop, maybe is just takes this long. Well, we can
check. Call the method longloop() from the Demo class. This one runs a while.
Now we want to know what’s going on. Show the debugger window, if it is not already
on screen.
Now click the Halt button. The execution is interrupted just as if we had hit a
breakpoint. You can now step a couple of steps, observe the variables, and see that this
is all okay – it just needs a bit more time to complete. You can just Continue and Halt
several times to see how fast it is counting. If you don’t want to go on (for example,
you have discovered that you really are in an infinite loop) you can just hit Terminate
to terminate the whole execution. Terminate should not be used too frequently – you
can leave perfectly well written objects in an inconsistent state by terminating the
machine, so it is advisable to use it only as an emergency mechanism.

Copyright © M. Kölling 31

8 Creating stand-alone applications

Summary: To create a stand-alone application, use Project - Create Jar File...

BlueJ can create executable jar files. Executable jar files can be executed on some
systems by double-clicking the file (for example on Windows and MacOS X), or by
issuing the command java -jar <file-name>.jar (Unix or DOS prompt).

We will try this with the example project hello. Open it (it is in the examples directory).
Make sure that the project is compiled. Select the Create Jar File... function from the
Project menu.

A dialogue opens that lets you specify the main class (Figure 17). This class must have
a valid main method defined (with the signature public static void
main(String[] args)).

Figure 17: The "Create Jar File" dialogue

In our example, choosing the main class is easy: there is only one class. Select Hello
from the popup menu. If you have other projects, select the class that holds the "main"
method you want to execute.

Usually, you would not include sources or BlueJ project files in executable files. But
you can, if you want to distribute your sources as well. (You can use the jar format to
send your whole project to someone else via email in a single file, for example.)
If you have configured BlueJ to use user libraries (either via the Preferences/Libraries
setting, or using the lib/userlib directory) you will see an area titled Include user
libraries in the middle of the dialogue. (If you are not using any libraries, this area will
be absent.) You should check every library that your current project uses.

 Creating stand-alone applications

Copyright © M. Kölling 32

Click Continue. Next, you see a file chooser dialogue that lets you specify a name for
the jar file to create. Type hello and click Create.

If you do not have libraries to be included, a file hello.jar will now be created. If you
have libraries, a directory named hello will be created, and within it the jar file hello.jar
as well as all necessary libraries. Your jar file expects to find referenced libraries in the
same directory it is in itself – so make sure to keep these jar files together when you
move them around.
You can double-click the jar file only if the application uses a GUI interface. Our
example uses text I/O, so we have to start it from a text terminal. Let's try to run the jar
file now.

Open a terminal or DOS window. Then go to the directory where you saved your jar
file (you should see a file hello.jar). Assuming Java is installed correctly on your
system, you should then be able to type

java -jar hello.jar

to execute the file.

Copyright © M. Kölling 33

9 Other operations

9.1 Opening non-BlueJ packages in BlueJ
Summary: Non-BlueJ packages can be opened with the Project: Open Non BlueJ...
command.

BlueJ lets you open existing packages that were created outside of BlueJ. To do this,
select Project – Open Non BlueJ... from the menu. Select the directory that contains the Java
source files, then click the Open in BlueJ button. The system will ask for confirmation
that you want to open this directory.

9.2 Adding existing classes to your project
Summary: Classes can be copied into a project from outside by using the Add Class
from File... command.

Often, you want to use a class that you got from somewhere else in your BlueJ project.
For example, a teacher may give a Java class to students to be used in a project. You
can easily incorporate an existing class into your project by selecting Edit – Add Class from
File... from the menu. This will let you select a Java source file (with a name ending in
.java) to be imported.
When the class is imported into the project, a copy is taken and stored in the current
project directory. The effect is exactly the same as if you had just created that class and
written all its source code.

An alternative is to add the source file of the new class to the project directory from
outside BlueJ. Next time you open that project, the class will be included in the project
diagram.

9.3 Calling main and other static methods
Summary: Static methods can be called from the class's popup menu.

Open the hello project from the examples directory. The only class in the project (class
Hello) defines a standard main method.

Right-click on the class, and you will see that the class menu includes not only the
class’s constructor, but also the static main method. You can now call main directly
from this menu (without first creating an object).

 Other operations

Copyright © M. Kölling 34

All static methods can be called like this. The standard main method expects an array
of Strings as an argument. You can pass a String array using the standard Java syntax
for array constants. For example, you could pass

 {"one", "two", "three"}

(including the braces) to the method. Try it out!

Side note: In standard Java, array constants cannot be used as actual arguments to
method calls. They can only be used as initialisers. In BlueJ, to enable interactive calls
of standard main methods, we allow passing of array constants as parameters.

9.4 Generating documentation
Summary: To generate documentation for a project, select Project Documentation from
the Tools menu.

You can generate documentation for your project in the standard javadoc format from
within BlueJ. To do this, select the Tools - Project Documentation from the menu. This
function will generate the documentation for all classes in a project from the classes’
source code and open a web browser to display it.

You can also generate and view the documentation for a single class directly in the
BlueJ editor. To do this, open the editor and use the popup menu in the editor’s toolbar.
Change the selection from Source Code to Documentation. This will show the javadoc
style documentation in the editor.

9.5 Working with libraries
Summary: The Java standard class API can be viewed by selecting Help - Java Class
Libraries.

Frequently, when you write a Java program, you have to refer to the Java standard
libraries. You can open a web browser showing the JDK API documentation by
selecting Help - Java Standard Classes from the menu (if you are online).

The JDK documentation can also be installed and used locally (offline). Details are
explained in the help section on the BlueJ web site.

9.6 Creating objects from library classes
Summary: To create objects from library classes, use Tools – Use Library Class.

BlueJ also offers a function to create objects from classes that are not part of your
project, but defined in a library. You can, for example, create objects of class String or
ArrayList. This can be very useful for quick experimentation with these library objects.

 Other operations

Copyright © M. Kölling 35

You can create a library object by selecting Tools – Use Library Class… from the menu. A
dialog will pop up that prompts you to enter a fully qualifies class name, such as
java.lang.String. (Note that you must type the fully qualified name, that is the name
including the package names that contain the class.)

The text entry field has an associated popup menu showing recently used classes. Once
a class name has been entered, pressing Enter will display all constructors and static
methods of that class in a list in the dialog. Any of these constructors or static methods
can now be invoked by selecting them from this list.

The invocation proceeds as any other constructor or method call.

 Other operations

Copyright © M. Kölling 36

10 Editor Tips and Tricks

The BlueJ editor is simple to use, but it does have some nice features. We will discuss
some of these features in this section.

10.1 Changing key bindings
Summary: Change key bindings in the editor using Options – Keybindings.

You can change the keys bound to the various editor functions. Choose “Key
Bindings…” from the Options menu in the editor. You will see a list of editing actions,
organised into a number of different categories; selecting an action will show you what
key combinations are bound to that action, and allow you remove bindings or assign
additional bindings to the action.
Just going through the list of available actions is a great way to find out about the
available editor features!

10.2 Stand-out comments
Summary: Use /*# … */ to create a stand-out comment.
Sometimes, for various reasons, it is useful to include comments in your code which
more easily catch the eye of the reader. Fortunately, BlueJ supports this in the form of
“stand out comments” which the editor will display in a lurid colour. Just put a ‘#’ after
the “/*” that marks the beginning of the comment!

10.3 Adjust editor preferences
Summary: Adjust editor preferences from within the editor via Options – Preferences.

The editor preferences – accessed via the Preferences item in the Options menu from
the editor – allow you to configure various aspects of the editor behaviour and display.
From here you can turn on the display of line numbers, adjust the font sizes, and adjust
the scope highlighting strength, amongst other settings.

Copyright © M. Kölling 37

11 Just the summaries

Getting started
1. To open a project, select Open from the Project menu.
2. To create an object, select a constructor from the class popup menu.
3. To execute a method, select it from the object popup menu.
4. To edit the source of a class, double-click its class icon.
5. To compile a class, click the Compile button in the editor. To compile a project, click the

Compile button in the project window.
6. Press Compile in the editor to move from one error to the next and see the corresponding

error message.
7. To view the documentation for a class, choose Documentation from the drop-down menu

in the editor toolbar.

Doing a bit more...
8. Object inspection allows some simple debugging by checking an object’s internal state.
9. An object can be passed as a parameter to a method call by clicking on the object icon.

Creating a new project
10. To create a project, select New... from the Project menu.
11. To create a class, click the New Class button and specify the class name.
12. To create an inheritance arrow, click the arrow button and drag the arrow in the diagram,

or just write the source code in the editor; “uses” dependency arrows are generated from
the source code.

13. To remove a class or an inheritance arrow, select the remove function from its popup.

Using the code pad
14. To start using the code pad, select Show Code Pad from the View menu.
15. To evaluate Java expressions, just type them into the code pad.
16. To make objects from the code pad available on the object bench, click the small object

icon and supply a name for the object reference.
17. Statements that are typed into the code pad are executed.
18. Use shift-Enter at the end of a line to enter multi-line statements.
19. Local variables can be declared and used in the codepad. The names of objects on the object

bench serve as instance fields.
20. Use up-arrow and down-arrow keys to make use of the input history.

Debugging
21. To set a breakpoint, click in the breakpoint area to the left of the text in the editor.
22. To single-step through your code, use the Step and Step Into buttons in the debugger.

 Just the summaries

Copyright © M. Kölling 38

23. Inspecting variables is easy – they are automatically displayed in the debugger.
24. Halt and Terminate can be used to halt an execution temporarily or permanently.

Creating stand-alone applications
25. To create a stand-alone application, use Project - Create Jar File...

Other operations
26. Non-BlueJ packages can be opened with the Project: Open Non BlueJ… command.
27. Classes can be copied into a project from outside by using the Add Class from File...

command.
28. Static methods can be called from the class's popup menu.
29. To generate documentation for a project, select Project Documentation from the Tools

menu.
30. The Java standard class API can be viewed by selecting Help - Java Standard Libraries.
31. To create objects from library classes, use Tools – Use Library Class.

Editor tips and tricks
32. Change key bindings in the editor using Options – Keybindings.
33. Use /*# … */ to create a stand-out comment.
34. Adjust editor preferences from within the editor via Options – Preferences.

