
Chapter 4 - notebook1 Project

Chapter 4 Book exercises:

Ex 4.1 Open the notebook1 project in BlueJ and create a Notebook object.

Store a few notes into it - they are simple strings - then check the number
of notes returned by numberOfNotes matches the number that you
stored.

When you use the showNote method, you will need to use a parameter
value of 0 (zero) to print the first note, 1 (one) to print the second note,
and so on. We shall explain the reason for this numbering in due course.

Concept "Collections: Collection objects are objects that can store an arbitrary
number of other objects."1

Note The main point to note is that the notebook1 project makes use of Java
library classes…

 import java.util.ArrayList;

 …and specifically, notebook1 makes use of the ArrayList class that is
defined in the java.util package.

Note that the import statement makes the ArrayList class from the
java.util package available to us for use in our notebook1 project.

Constructor
method

Note that the notebook1 constructor method creates an instance of an
ArrayList object, with the object reference notes.

public Notebook()
{
 notes = new ArrayList();
}

 The methods in the notebook1 project make use of two of the methods
that have been predefined for all ArrayList objects. These are…

public void storeNote(String note)
{
 notes.add(note);
}

 …add, providing us with the ability to add a note, and…

1 Barnes & Kolling, Objects First With Java, p78

public int numberOfNotes()
{
 return notes.size();
}

 …size, providing us with the size of the current notes ArrayList object.

 Remember that an ArrayList object keeps its own private count of the
number of items that it is storing and that the size method returns this
number.

 The provision of this facility means that we do not have to consider
maintaining our own records of how many notes are stored.

 The remaining method in the notebook1 project, showNote, simply
checks to see if the note that the user has opted to display is a valid note
number and, if it is, then proceeds to display the note in the terminal
window.

Note that the numbering of the notes starts at 0, thus the initial check is to
ensure that the user has not opted to display a note that is less than 0.

 The next check is to ensure that the user has not opted to display a note
that is above the actual number of notes i.e. one that does not yet exist.

public void showNote(int noteNumber)
{
 if(noteNumber < 0) {
 // This is not a valid note number, so do nothing.
 }
 else if(noteNumber < numberOfNotes()) {
 // This is a valid note number, so we can print it.
 System.out.println(notes.get(noteNumber));
 }
 else {
 // This is not a valid note number, so do nothing.
 }
}

Note At this point we should appreciate the ability to use predefined classes

without necessarily knowing the ins and outs of exactly how those classes
work. Suffice to say that, we should be happy enough knowing that we
can use ArrayList objects to provide storage for arbitrary number of
objects in the classes that we define.

Positioning Remember that items stored in collections are numbered from zero
upwards. The position of an object within a collection is referred to as its
index. The line of code shown below makes use of this index position to
display a specific note, as requested by the user.

 System.out.println(notes.get(noteNumber));

Range Note that the code of the showNote method ensures that the note the user
is opting to display is 'in range'. The range can be defined as follows:

 [0 … (size-1)]

 Why size - 1? If the size is 10, for example then there are 10 notes in
total. These will be numbered as shown below:

 1st note 0
 2nd note 1
 3rd note 2
 4th note 3
 5th note 4
 6th note 5
 7th note 6
 8th note 7
 9th note 8
 10th note 9

Ex 4.2 Implement a removeNote method in your notebook.

 Add the code shown on page 83 of the text.

public void removeNote(int noteNumber)
{
 if(noteNumber < 0){
 // this is not a vaid note number, so do nothing
 }
 else if(noteNumber < numberOfNotes()){
 // this is a valid note number, so we can remove it
 notes.remove(noteNumber);
 }
 else{
 // this is not a valid note number, so do nothing
 }
}

 Add the code, compile and then create an instance of a Notebook object.

Enter 3 or 4 similar notes so that it is easy to keep track of them.

I would suggest that you then invoke the removeNote method a number
of times, removing the note with the zero index each time. Then invoke
the showNote method, again opting for the note with the zero index.

If you do this, you will see how the removal of a note in the zero index
position results in the movement of the following notes - the previous
note at index 1 moves to index position zero and so on.

Note It should be obvious to you from the code that you have just added, that
remove is another example of a predefined method that is available to
objects of the ArrayList class.

Ex 4.3 What might the header of a listAllNotes method look like? What sort of
return type should it have? Does it need to take any parameters?

 public void listAllNotes()

 You could write all of the notes to a String and return this String. However,
I would suggest that it would be easiest to just display the notes to the
terminal window. Thus, I have opted for a return type of void in the
above line of code to indicate that there is nothing returned.

 Because you are defining a method that will list all of the notes then there
is no need to pass any parameters. If, for example, you wanted to
display a specific note then this would, of course, be different - you would
want to specify which note to print. However, as you wish to display all
notes, there is no need to pass any parameters.

Ex 4.4 We know that the first note is stored at index zero in the ArrayList so
could we write the body of listAllNotes along the following lines?

 System.out.println(notes.get(0));
System.out.println(notes.get(1));
System.out.println(notes.get(2));

etc.

 How many System.out.println(notes.get(x)); would you need?
When would you stop? What if you attempted to get a note that no longer
existed? What if you added new notes? Basically, the suggested solution
above is not really feasible. Thus, we need to look at how else to complete
this task - loops.

Ex 4.5 Implement the listNotes method in your version of the notebook project.
(A solution with this method implemented is provided in the notebook2
version of this project, but to improve your understanding of the subject we
recommend that you write this method yourself.)

public void listNotes()
{
 int index = 0;
 while(index < notes.size()){
 System.out.println(notes.get(index));
 index++;
 }
}

 The listNotes method makes use of a local variable of type int called

index. This is initialised to 0 an it is then used as the counter that
controls the repetition of the while loop - index must be less than the
size returned by notes.size() and, as long as this condition is true,
there must still be a note to print. Thus, the action is performed - the
note is printed. The value of index is then incremented so that, next time
round the while loop, index refers to the next note.

Ex 4.6 Create a Notebook and store a few notes in it. Use the listNotes method
to print them out to check that the method works as it should.

 The method does work!

Ex 4.7 If you wish, you could use the debugger to help yourself understand how
the statements in the body of the while loop are repeated. Set a
breakpoint just before the loop, and step through the method until the
loops condition evaluates to false.

 Watch as the value of index is incremented. Note the effect that this has
in determining whether the while loop runs again or not.

Ex 4.8 Modify showNote and removeNote to print out an error message if the
note number entered was not valid.

 The suggested code for this is shown below:

 The showNote method:

public void showNote(int noteNumber)
{
 if(noteNumber < 0) {
 // This is not a valid note number, so do nothing.
 }
 else if(noteNumber < numberOfNotes()) {
 // This is a valid note number, so we can print it.
 System.out.println(notes.get(noteNumber));
 }
 else {
 System.out.println("Invalid note number");
 }
}

 The removeNote method:

public void removeNote(int noteNumber)
{
 if(noteNumber < 0){
 // this is not a vaid note number, so do nothing
 }
 else if(noteNumber < numberOfNotes()){
 // this is a valid note number, so we can remove it
 notes.remove(noteNumber);
 }
 else{
 System.out.println("Invalid note number");
 }
}

 Note that the provision of an error message is easily achieved via the

addition of an appropriate System.out.println line in place of the //
this is not a valid note number, so do nothing comments
that were there previously.

Ex 4.9 Modify the listNotes method so that it prints the value of the index local
variable in fron of each note. For instance:

 0: Buy some bread.
1: Recharge phone.
2: 11.30. Meeting with John.

 This makes it much easier to provide the correct index when removing a
note. The suggested code for this is shown below. Note that this involves
a minor change to the System.out.println line, to include an actual
reference to the index variable.

public void listNotes()
{
 int index = 0;
 while(index < notes.size()){
 System.out.println(index + ": " + notes.get(index));
 index++;
 }
}

The Result:

Ex 4.10 Within a single execution of the listNotes method, the notes collection is
asked repeatedly how many notes it is currently storing. This is done
every time the loop condition is checked. Does the value returned by size
vary from one check to the next? If you think the answer is 'No', then
rewrite the listNotes method so that the size of the notes collection is
determined only once and stored in a local variable prior to execution of
the loop. Then use the local variable in the loops condition rather than the
call to size. Check that this version gives the same results. If you have
problems completing this exercise, try using the debugger to see where
things are going wrong.

 There is no possibility that the notes collection will change in size at the
same time as you are invoking the listNotes method and, thus, for the
duration of this method, there will only ever be one value for the size of
the collection. Thus, to continually request this value is inefficient.

A better option is provided below. Note that the size of the collection is
obtained only once and it is this value that determines the number of
times that the while loop will run.

A local variable size of type int is assigned the value that is returned from
notes.size(); and it is this size variable that is then used to determine
the number of times that the while loop runs.

public void listNotes()
{
 int size = notes.size();
 int index = 0;
 while(index < size){
 System.out.println(index + ": " + notes.get(index));
 index++;
 }
}

Ex 4.11 Change your notebook so that notes are numbered starting from 1, rather
than zero. Remember that the ArrayList object will still be using indices
starting from zero, but you can present the notes numbered from 1 in
your listing. Make sure you modify showNote and removeNote
appropriately.

 The resulting display would appear as follows:

 The complete code for the Notebook class is shown below. Note that the
user will be able to think of the notes as being note 1, note 2 and so on but
that these notes will actually be note 0, note 1 etc because of the way that
the numbering of an ArrayList works.

Because of this, when the user opts to display a note or remove a note,
we must subtract 1 from the number that they enter and this gives us the
true index position of the note in question.

Create a notebook with a number of notes and try this for yourself.

import java.util.ArrayList;

public class Notebook
{
 // Storage for an arbitrary number of notes.
 private ArrayList notes;

 public Notebook()
 {
 notes = new ArrayList();
 }

 public void storeNote(String note)
 {
 notes.add(note);
 }

 public int numberOfNotes()
 {
 return notes.size();
 }

 public void showNote(int noteNumber)
 {
 if(noteNumber < 1) {
 // This is not a valid note number, so do nothing.
 }
 else if(noteNumber <= numberOfNotes()) {
 // This is a valid note number, so we can print it.
 System.out.println(notes.get(noteNumber-1));
 }
 else {
 System.out.println("Invalid note number");
 }
 }

 public void removeNote(int noteNumber)
 {
 if(noteNumber < 1){
 // this is not a vaid note number, so do nothing
 }
 else if(noteNumber <= numberOfNotes()){
 // this is a valid note number, so we can remove it
 notes.remove(noteNumber-1);
 }
 else{
 System.out.println("Invalid note number");
 }
 }

 public void listNotes()
 {
 int size = notes.size();
 int index = 0;
 while(index < size){
 System.out.println((index + 1) + ": "
 + notes.get(index));
 index++;
 }
 }
}

Note: Iterator "An iterator is an object that provides functionality to iterate over all

elements of a collection."2

2 Barnes & Kolling, Objects First With BlueJ, p87

Chapter 4 - Auction Project

Note: null "The Java keyword null is used to mean 'no object' when an object

variable is not currently referring to a particular object. A field that has not
explicitly been initialized will contain the value null by default."3

Ex 4.12 Find a further example of casting in the getLot method of the Auction
class. The getLot method contains the line below that shows the use of
casting:

 Lot selectedLot = (Lot) lots.get(number-1);

Ex 4.13 What happens if you try to compile the Auction class without one of the
casts? For instance, edit the showLots method so that the first statement
in the body of the while loop reads:

 Lot lot = it.next();

 The effect of removing the cast is as shown below, an Incompatible
types error message found java.lang.Object but expected Lot:

Ex 4.14 Add a close method to the Auction class. This should iterate over the
collection of lots and print out details of all the lots. For lots that have been
sold, the details should include the name of the successful bidder, and
the value of the winning bid. For lots that have not been sold, print a
message that indicates this fact.

 The idea is that the close method will run through the list of lots and will
regard any that have at least one bid against them as being sold.

3 Barnes & Kolling, Objects First With BlueJ, p90

close Method The suggested code for the close method is shown below:

public void close()
{
 Iterator it = lots.iterator();
 while(it.hasNext()) {
 Lot lot = (Lot) it.next();
 if(lot.getHighestBid() != null)
 {
 System.out.println(lot.getNumber() + ": " +
 lot.getDescription());
 System.out.println("Name of bidder: " +
 lot.getHighestBid().getBidder().getName());
 System.out.println("Value of bid: " +
 lot.getHighestBid().getValue());
 }
 }
}

Ex 4.15 Add a getUnsold method to the Auction class with the following

signature:

 public ArrayList getUnsold()

 The idea is that the getUnsold method will run through the list of lots and
will regard any that have no bids against them as being unsold.

This method should iterate over the lots field, storing unsold lots in a new
ArrayList local variable. At the end of the method, return the list of unsold
lots.

public ArrayList getUnsold()
{
 ArrayList unsoldLots = new ArrayList();
 int nextLotNumber = 1;

 Iterator it = lots.iterator();
 while(it.hasNext()) {
 Lot lot = (Lot) it.next();
 if(lot.getHighestBid() == null)
 {
 unsoldLots.add(new Lot(nextLotNumber,lot.getDescription()));
 nextLotNumber++;
 }
 }
 return unsoldLots;
}

 Note that the text specifically requests that you store unsold lots in a new

ArrayList local variable and that the method should return the ArrayList.

 The use of an ArrayList in this way can be seen when you invoke the
getUnsold method…

 The following dialog is displayed…

 Click once to select the <object reference> and then click Inspect. You
will see the following dialog. Click once on the <object reference> line
shown below and again click Inspect.

The following dialog is displayed…

 Click once on the <object reference> line shown below and again click
Inspect. You should finally see a String description that relates to one of
your unsold lots. Note also that the highestBid Bid object reference does
not point to an object and is, instead, a null reference.

Note

You were specifically asked to add a getUnsold method to the Auction
class with the following signature:

 public ArrayList getUnsold()

 In other words, you were specifically asked to create a getUnsold method
with ArrayList as the return type.

 However, as you can see from above, our use of an ArrayList does
complicate things somewhat in terms of accessing the result.

The methodology is not without merit - it does demonstrate that we can
create a method with an ArrayList for a return type.

 However, the code could be simplified as shown below in a way that

makes it very similar to the close method - simply printing out the
details of the unsold lots.

public void getUnsold()
{
 Iterator it = lots.iterator();
 while(it.hasNext()){
 Lot lot = (Lot) it.next();
 if(lot.getHighestBid() == null){
 System.out.println("Lot: " + lot.getNumber()
 + ": " + lot.getDescription()
 + " is unsold.");
 }
 }
}

Ex 4.16 Suppose that the Auction class includes a method that makes it possible

to remove a lot from the auction. Assuming that the remaining lots do not
have their lotNumber fields changed when a lot is removed, what impact
would the ability to remove lots have on the getLot method?

 The Auction class keeps a 'running tally' of the number of lots by
incrementing an instance variable called nextLotNumber.

The constructor method for the Auction class initialises the
nextLotNumber variable to 1 and this is used in the actual creation of
the first Lot - it is passed to the constructor method for the Lot. It is, at
this point, assigned as the value of the Lot's number instance variable.

 The lots ArrayList, into which Lots are entered, will start at 0.

 If the Auction class includes a method that makes it possible to remove a
lot from the auction, and assuming that the remaining lots do not have
their lotNumber fields changed when a lot is removed, the effect is that
the linkage between the nextLotNumber instance variable, the Lot's
number instance variable, and the actual numbering in the ArrayList is
lost.

 The getLot method is shown below:

public Lot getLot(int number)
{
 if((number >= 1) && (number < nextLotNumber)) {
 // The number seems to be reasonable.
 Lot selectedLot = (Lot) lots.get(number-1);
 // Include a confidence check to be sure we have the
 // right lot.
 if(selectedLot.getNumber() != number) {
 System.out.println("Internal error: " +
 "Wrong lot returned. " +
 "Number: " + number);
 }
 return selectedLot;
 }
 else {
 System.out.println("Lot number: " + number +
 " does not exist.");
 return null;
 }
}

 As can be seen from the above code, the getLot method expects an

integer to be passed as a parameter. This integer - number - is then
checked to ensure that it is greater than or equal to one and also that it is
less than the value held in nextLotNumber - which is always going to be
one more than the number of lots.

The number is then used to retrieve the actual Lot from the Lots
ArrayList. Note that this involves a cast. To obtain the actual lot involves
deducting 1 from number i.e. Lot number 1 will be in ArrayList index
position 0, Lot number 2 will be in ArrayList index position 1 and so on.

 Note that there is a check whereby the lot number of the selectedLot
object reference is checked, to ensure that the correct lot has been
returned.

 Note that a null reference is returned if the number passed to the method
does not meet the criterion of the if statement i.e. the number is 1 or
above and less than the value of the nextLotNumber variable.

 If we remove lots from the ArrayList, because of the automatic
contraction of the ArrayList, the number - 1 concept will fail to work, as
the lot's number will no longer be an accurate representation of its
position in the ArrayList.

Ex 4.17 Rewrite getLot so that it does not rely on a lot with a particular number

being stored at index (number-1) in the collection. You may assume that
lots are always stored in increasing order of their lot number.

 If we consider that, when lots are created, they will be assigned a number
from 1 to the incremented nextlotNumber, it is still sensible to check that
the number passed to the method falls between these two limits.

If the number does not fall between these limits, then we are immediately
told that this is "Not a valid lot number" and a null reference is returned.

If the number does fall between these limits then the ArrayList is checked
for Lot objects where the number of the lot matches the number
entered. If a match is found then that lot is returned. If no match is
found, then the user is informed that "No lot number x exists." and a
null reference is returned.

public Lot getLot(int number)
{
 if((number >= 1) && (number < nextLotNumber)){
 Iterator it = lots.iterator();
 while(it.hasNext()) {
 Lot selectedLot = (Lot) it.next();
 if(selectedLot.getNumber() == number)
 return selectedLot;
 }// end of while loop
 System.out.println("No lot number " + number + " exists.");
 return null;
 }
 else{
 System.out.println("Not a valid lot number.");
 return null;
 }
}

Ex 4.18 Add a removeLot method to the Auction class, having the following

signature:

 /**
 * Remove the lot with the given lot number.
 * @param number The number of the lot to be removed
 * @return The lot with the given number, or null if
 * there is no such lot.
 */

public Lot removeLot(int number)

 This method should not assume that a lot with a given number is stored at
any particular location within the collection.

 This follows on from the previous example - we should not assume that

number - 1 represents the actual position of the lot in the ArrayList. We
therefore take a similar approach to that used immediately above.

public Lot removeLot(int number)
{
 if((number >= 1) && (number < nextLotNumber)){
 Iterator it = lots.iterator();
 int counter = 0;
 while(it.hasNext()) {
 Lot selectedLot = (Lot) it.next();
 if(selectedLot.getNumber() == number){
 lots.remove(counter);
 return selectedLot;
 }
 counter++;
 }// end of while loop
 System.out.println("No lot number " + number +
 " exists, therefore unable to remove lot.");
 return null;
 }
 else{
 System.out.println("Not a valid lot number.");
 return null;
 }
}

Chapter 4 - weblog-analyzer Project

Ex 4.19 Explore the weblog-analyzer project by creating a LogAnalyzer object

and calling its analyzeHourlyData method. Follow that with a call to its
printHourlyCounts method, which will print the results of the analysis.
Which are the busiest times of day?

 The busiest times of day are as follows:

 10: 227
14: 227
18: 237

 Remember that the hours are numbered from 0 to 23 so can actually be
thought of as follows:

 Array Index 24hr time 'Real' time
 10 11:00 11am
 14 15:00 3pm
 18 19:00 7pm

Ex 4.20 Write a declaration for an array variable people that could be used to refer

to an array of Person objects.

private Person[] people;

private Person[] people = new Person[integer-expression];

Ex 4.21 Write a declaration for an array variable vacant that could be used to refer

to an array of boolean values.

private boolean[] vacant;

private boolean[] vacant = new boolean[integer-expression];

Ex 4.22 Read through the LogAnalyser class and identify all the places where the

hourCounts variable is used. At this stage, do not worry about what all
the uses mean as they will be explained in the following sections. Note
how often a pair of square brackets is used with the variable.

 hourCounts is used in the following lines...

 …when declaring instance variables...

 private int[] hourCounts;

 Within the constructor method for the LogAnalyzer class...

 hourCounts = new int[24];

 Within the AnalyseHourlyData method

 hourCounts[hour]++;

 Within the printHourlyCounts method...

Note that hourCounts is used in terms of the length of the array and also
with the index hourCounts[hour]

public void printHourlyCounts()
{
 System.out.println("Hr: Count");
 for(int hour = 0; hour < hourCounts.length; hour++) {
 System.out.println(hour + ": " + hourCounts[hour]);
 }
}

Ex 4.23 Given the following variable declarations:

 double[] readings;

String[] urls;
TicketMachine[] machines;

 Write assignments that accomplish the following tasks:

 (a) Make the readings variable refer to an array that is able to hold
60 double values;

(b) Make the urls variable refer to an array that is able to hold 90
String objects;

(c) Make the machines variable refer to an array that is able to hold
five TicketMachine objects.

 Results are as follows:

 double[] readings;
readings = new double[60];

String[] urls;
urls = new String[90];

TicketMachine[] machines;
machines = new TicketMachine[5];

Ex 4.24 How many String objects are created by the following declaration?

 String[] labels = new String[20];

 Watch this trick question... no actual String objects are created by the
above line. What the line does do is to create a fixed-size collection that
is able to have 20 Strings stored within it.

Note: Array indices always start at zero.

Note: "Two very common errors are to think that the valid indices of an array
start at 1, and to use the value of the length of the array as an index.
Using indices outside the bounds of an array will lead to a runtime error
called an ArrayOutOfBoundsException."4

Note: Expressions that select an element from an array can be used anywhere a
value of the base type of the array could be used.

4 Barnes & Kolling, Objects First With BlueJ, p99

Note: Using an array index on the left-hand side of an assignment is the array
equivalent of a mutator (or set method) because the contents of the array
will be changed. Using one anywhere else represents the equivalent of an
accessor (or get method).

Note: hour < hourCounts.length

 "All arrays contain a field length that contains the value of the fixed size of
that array. The value of this field will always match the value of the integer
expression used to create the array object."5

Ex 4.25 Check to see what happens if the for loops condition is incorrectly written
using the '<=' operator in printHourlyCounts:

 for(int hour = 0; hour <= hourCounts.length; hour ++)

 The result of using <= is an ArrayIndexOutOfBoundsException error
when you attempt to run the program.

Ex 4.26 Rewrite the body of printHourlyCounts so that the for loop is replaced by
an equivalent while loop. Call the rewritten method to check that it prints
the same results as before.

The code is shown below. Note that I have left the for loop commented
into the method for purposes of comparison:

public void printHourlyCounts()
{
 /**
 * for(int hour = 0; hour < hourCounts.length; hour++) {
 * System.out.println(hour + ": " + hourCounts[hour]);
 * }
 */

 System.out.println("Hr: Count");
 int hour = 0;
 while(hour < hourCounts.length){
 System.out.println(hour + ": " + hourCounts[hour]);
 hour++;
 }
}

5 Barnes & Kolling, Objects First With BlueJ, p101

Ex 4.27 Rewrite the following method from the Notebook class in the notebook2

project so that it uses a for loop rather than a while loop:

(As before, I have left the old loop commented into the body of the
method)

public void listNotes()
{
 /** int index = 0;
 * while(index < notes.size()) {
 * System.out.println(notes.get(index));
 * index++;
 * }
 */

 for(int index = 0; index < notes.size(); index++){
 System.out.println(notes.get(index));
 }
}

Ex 4.28 Complete the numberOfAccesses method, below, to count the total

number of accesses recorded in the log file. Complete it by using a loop to
iterate over hourCounts:

(Note that I have made use of System.out.println so that the exact
actions of the loop can be easily viewed.)

public int numberOfAccesses()
{
 int total = 0;
 // Add the value in each element of hourCounts to total.

 for(int index = 0; index < hourCounts.length; index++){
 total += hourCounts[index];
 System.out.println("(" + hourCounts[index]
 + ") in hour: " + (index + 1)
 + ". Total: " + total);
 }
 return total;
}

 The printout in the Terminal Window is as follows:

 (149) in hour: 1. Total: 149
 (149) in hour: 2. Total: 298
 (148) in hour: 3. Total: 446
 (109) in hour: 4. Total: 555
 (92) in hour: 5. Total: 647
 (177) in hour: 6. Total: 824
 (185) in hour: 7. Total: 1009
 (142) in hour: 8. Total: 1151
 (91) in hour: 9. Total: 1242
 (85) in hour: 10. Total: 1327
 (227) in hour: 11. Total: 1554
 (142) in hour: 12. Total: 1696
 (114) in hour: 13. Total: 1810
 (164) in hour: 14. Total: 1974
 (227) in hour: 15. Total: 2201
 (185) in hour: 16. Total: 2386
 (167) in hour: 17. Total: 2553
 (198) in hour: 18. Total: 2751
 (237) in hour: 19. Total: 2988
 (172) in hour: 20. Total: 3160
 (142) in hour: 21. Total: 3302
 (113) in hour: 22. Total: 3415
 (168) in hour: 23. Total: 3583
 (166) in hour: 24. Total: 3749

(note that the hours run from 1 to 24 because of the addition of 1 to index)

Total accesses : 3749

Ex 4.29 Add your numberOfAccesses method to the LogAnalyzer class and
check that it gives the correct result. Hint: You can simplify your checking
by having the analyzer read log files containing just a few lines of data.
That way you will find it easier to determine whether or not your method
gives the correct answer. The LogfileReader class has a constructor with
the following signature to read from a particular file:

 /**
 * Create a LogfileReader that will supply data
 * from a particular log file.
 * @param filename The file of log data.
 */

 public LogfileReader(String filename)

 Trust me when I tell you that the answer that you should get when using
the original file is 3749!

Ex 4.30 Add a method busiestHour to LogAnalyzer that returns the busiest hour.
You can do this by looking through the hourCounts array to find the
element with the biggest count. Hint: Do you need to check every element
to see if you have found the busiest hour? If so, use a for loop.

 The code for the busiestHour method is as shown below:

You need to assume that the first hour is the busiest hour until, as a
result of a comparison, you find that another hour is, in fact, busier.

When you do find a busier hour, then this becomes your new busiest
hour and so on.

This should be easy to test as the busiest time is 237 in hour 18 on the
0 to 23 index (19:00, or 7pm)

public int busiestHour()
{
 int busiestHour = 0;
 for(int index = 0; index < hourCounts.length; index++){
 if(hourCounts[index] > hourCounts[busiestHour]){
 System.out.println("Previous busiest hour: "
 + hourCounts[busiestHour]
 + ", new busiest hour: "
 + hourCounts[index]);
 busiestHour = index;
 }
 }
 return busiestHour;
}

 The local variable busiestHour is set to 0, indicating that we are

assuming the first hour, hour 0, is the busiest.

 The for loop goes through the entire array comparing the values held in
each element of the array.

When a larger value is found, the busiestHour variable is changed to
the index position of the larger value.

 The result when you test this method is as follows:

 Previous busiest hour: 149, new busiest hour: 177
Previous busiest hour: 177, new busiest hour: 185
Previous busiest hour: 185, new busiest hour: 227
Previous busiest hour: 227, new busiest hour: 237

The result that is returned... 18...
(would be hour 19 if it were 1 to 24)

Ex 4.31 Add a method quietestHour to LogAnalyzer that returns the number of
the least busy hour. Note: This sounds almost identical to the previous
exercise, but there is a small trap for the unwary here. Be sure to check
your method with some data in which every hour has a non-zero count.

 Note that I have again constructed this method in such a way as to print to
the terminal window so that it is easy to see what is happening.

 The 'trap' is that you must remember to test for less than, as opposed to
greater than in the previous method.

 < instead of >

public int quietestHour()
{
 int quietestHour = 0;
 for(int index = 0; index < hourCounts.length; index++){
 if(hourCounts[index] < hourCounts[quietestHour]){
 System.out.println("Previous quietest hour: "
 + hourCounts[quietestHour]
 + ", new quietest hour: "
 + hourCounts[index]);
 quietestHour = index;
 }
 }
 return quietestHour;
}

 The result when you test this method is as follows:

 Previous quietest hour: 149, new quietest hour: 148

Previous quietest hour: 148, new quietest hour: 109
Previous quietest hour: 109, new quietest hour: 92
Previous quietest hour: 92, new quietest hour: 91
Previous quietest hour: 91, new quietest hour: 85

The result that is returned... 9...
(would be hour 10 if it were 1 to 24)

Ex 4.32 Which hour is returned by your busiestHour method if more than one
hour has the biggest count?

 With the suggested code, both the busiestHour and the quietestHour
methods will return the first hour that they come across in the event that
there are two or more hours with the same (highest or lowest) value.

Why?

Because the methods check to see if the value is...

greater than for the busiest

...or...

less than for the quietest

If we were to amend the code to check for greater than or equal to, or
less than or equal to, then we would end up with the last (highest or
lowest) value as the equal part would result in that particular index
value being remembered.

Ex 4.33 Add a method to LogAnalyzer that finds which two-hour period is the

busiest. Return the value of the first hour of this period.

 The code is as follows:

public int busiestTwoHourPeriod()
{
 int busiestHours = 0;
 int totalHours = 0;
 int startingAt = 0;
 for(int index = 0; index < hourCounts.length - 1; index++){
 totalHours = hourCounts[index] + hourCounts[index+1];
 System.out.println("Hour: " + index + ", Hour: " + (index + 1)
 + ", Total: " + totalHours);
 if(busiestHours < totalHours){
 busiestHours = totalHours;
 startingAt = index;
 System.out.println("New busiest total: " + busiestHours);
 }
 }
 return hourCounts[startingAt];
}

 The method returns 198 from index position 17 in the array. Together with

the value held in index position 18 of the array, 237, the combined total
for these two hours is 435, the largest combination of two concurrent
hours possible.

 Note that the suggested code lets you follow the 'action' in the method:

 Hour: 0, Hour: 1, Total: 298 New busiest total: 298
Hour: 1, Hour: 2, Total: 297
Hour: 2, Hour: 3, Total: 257
Hour: 3, Hour: 4, Total: 201
Hour: 4, Hour: 5, Total: 269
Hour: 5, Hour: 6, Total: 362 New busiest total: 362
Hour: 6, Hour: 7, Total: 327
Hour: 7, Hour: 8, Total: 233
Hour: 8, Hour: 9, Total: 176
Hour: 9, Hour: 10,Total: 312
Hour: 10,Hour: 11,Total: 369 New busiest total: 369
Hour: 11,Hour: 12,Total: 256
Hour: 12,Hour: 13,Total: 278
Hour: 13,Hour: 14,Total: 391 New busiest total: 391
Hour: 14,Hour: 15,Total: 412 New busiest total: 412
Hour: 15,Hour: 16,Total: 352
Hour: 16,Hour: 17,Total: 365
Hour: 17,Hour: 18,Total: 435 New busiest total: 435
Hour: 18,Hour: 19,Total: 409
Hour: 19,Hour: 20,Total: 314
Hour: 20,Hour: 21,Total: 255
Hour: 21,Hour: 22,Total: 281
Hour: 22,Hour: 23,Total: 334

Ex 4.34 Challenge Exercise: Save the weblog-analyzer project under a different
name, so that you can develop a new version that performs a more
extensive analysis of the available data. For instance, it would be useful to
know which days tend to be quieter than others - are there any seven-day
cyclical patterns, for instance? In order to perform analysis of daily,
monthly, or yearly data you will need to make some changes to the
LogEntry class. This already stores all the values from a single log line,
but only the hour and minute values are available via accessors. Add
further methods that make the remaining fields available in a similar way.
Then add a range of additional analysis methods to the analyzer.

Ex 4.35 Challenge Exercise: If you have completed the previous exercise, you
could extend the log file format with additional numerical fields. For
instance, servers commonly store a numerical code that indicates whether
an access was successful or not: the value 200 stands for a successful
access, 403 means that access to the document was forbidden, and 404
means that the document could not be found. Have the analyzer provide
information on the number of successful and unsuccessful accesses. This
exercise is likely to be very challenging, as it will require you to make
changes to every class in this project.

 Challenge Exercises 4.34 and 4.35 No Solutions.

Chapter 4 - Additional Exercises

Ex 4.36 In the lab-classes project that we have discussed in previous chapters,

the LabClass includes a students field to maintain a collection of Student
objects. Read through the LabClass class in order to reinforce some of
the concepts we have discussed in this chapter.

 The code for the LabClass is contained below:

import java.util.*;

public class LabClass
{
 private String instructor;
 private String room;
 private String timeAndDay;
 private List students;
 private int capacity;

The above code defines the instance variables for the LabClass. Note
that, as well as an int and three Strings, there is also a students List
defined. Note also the import statement, importing the java.util
package.

 /**
 * Create a LabClass with a maximum number of enrolments.
 * All other details
 * are set to default values.
 */
 public LabClass(int maxNumberOfStudents)
 {
 instructor = "unknown";
 room = "unknown";
 timeAndDay = "unknown";
 students = new ArrayList();
 capacity = maxNumberOfStudents;
 }

The constructor method for LabClass. Note that the students reference
is declared as being an ArrayList.

 /**
 * Add a student to this LabClass.
 */
 public void enrolStudent(Student newStudent)
 {
 if(students.size() == capacity) {
 System.out.println("The class is full, you cannot enrol.");
 }
 else {
 students.add(newStudent);
 }
 }

The enrolStudent method. Note that this method expects a reference to
a Student object to be passed as a parameter.

Note that one of the instance variables defined relates to the capacity of
the LabClass. A check is performed to see if a call to the size method of
the students ArrayList returns a size that equals the capacity. If it does,
then no new students are added.

If, however, the LabClass is not yet at capacity then the add method is
called passing the reference to the Student object as its parameter.

 /**
 * Return the number of students currently
 * enrolled in this LabClass.
 */
 public int numberOfStudents()
 {
 return students.size();
 }

The numberOfStudents method simply returns the number of students
in the students ArrayList.

 /**
 * Set the room number for this LabClass.
 */
 public void setRoom(String roomNumber)
 {
 room = roomNumber;
 }

The setRoom method simply assigns whatever String roomNumber is to
the instance variable room.

 /**
 * Set the time for this LabClass.
 * The parameter should define the day
 * and the time of day, such as "Friday, 10am".
 */
 public void setTime(String timeAndDayString)
 {
 timeAndDay = timeAndDayString;
 }

The setTime method simply assigns whatever String timeAndDayString
is to the instance variable timeAndDay.

 /**
 * Set the name of the instructor for this LabClass.
 */
 public void setInstructor(String instructorName)
 {
 instructor = instructorName;
 }

The setInstructor method simply assigns whatever String
instructorName is to the instance variable instructor.

 /**
 * Print out a class list with other LabClass
 * details to the standard terminal.
 */
 public void printList()
 {
 System.out.println("Lab class " + timeAndDay);
 System.out.println("Instructor: " + instructor +
 " room: " + room);
 System.out.println("Class list:");
 Iterator i = students.iterator();
 while(i.hasNext()) {
 Student student = (Student)i.next();
 student.print();
 }
 System.out.println("Number of students: " +
 numberOfStudents());
 }

The printList method prints the values held by the instance variables of
the LabClass to the terminal window. Note the use of an iterator object
to work through the students ArrayList.

Note also the use of casting - to a Student object.

}

Finally, the closing } finishes the LabClass class definition.

Ex 4.37 The LabClass class enforces a limit to the number of students who may
be enrolled in a particular tutorial group. In view of this, do you think it
would be more appropriate to use a fixed-size array rather than a flexible-
size collection for the students field? Give reasons both for and against
the alternatives.

 Use of a fixed-size collection would be appropriate if the class size
were to remain fixed.

Ex 4.38 Java provides another type of loop: the do-while loop. Find out how this
loop works and describe it. Write an example of a do-while loop that
prints out the numbers from 1 to 10. To find out about this loop, find a
description of the Java language (for example at:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/

in the section Control Flow Statements.)

 The URL is for a Java Language Basics site as illustrated below:

 The following information can be obtained about do - while loops:

 do
A Java(TM) programming language keyword used to declare
a loop that will iterate a block of statements. The loop`s exit
condition can be specified with the "while" keyword.

 An example of a do-while loop that prints the numbers from 1 to 10 is
shown below:

 int number = 0;
 do{
 System.out.println("Number: " + number);
 number++;
 }while(number < 11);

The following result is obtained:

 Note that a do while loop will always perform an action at least once.
Once the initial action has been completed, it will then perform a test that
determines whether the loop runs again.

Ex 4.39 Rewrite the notebooks listNotes method using a do-while loop.

 The listNotes method can be rewritten with a do-while loop as follows:

 public void ListNotes()
 {
 int index = 0;
 do{
 System.out.println(notes.get(index));
 index++;
 }while(index < notes.size());
 }

 The problem arises when you have no notes stored as the actions are

performed once before the test on notes.size() is performed.

When there are no notes, an IndexOutOfBoundsException error is
obtained as shown below:

Ex 4.40 Find out about Javas switch-case statement. What is its purpose? How is
it used? Write an example. (This is also a control flow statement, so you
find information in similar locations as for the do-while loop.)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html

 Use the switch statement to conditionally perform statements based on

an integer expression.

 The following exemplifies the use of a switch statement:

public class MonthPicker
{
 public MonthPicker()
 {
 // nothing to do in constructor
 }

 public void chooseMonth(int month)
 {
 int monthSelected = month;
 String selectedMonth="";
 switch (month) {
 case 1: selectedMonth = "January"; break;
 case 2: selectedMonth = "February"; break;
 case 3: selectedMonth = "March"; break;
 case 4: selectedMonth = "April"; break;
 case 5: selectedMonth = "May"; break;
 case 6: selectedMonth = "June"; break;
 case 7: selectedMonth = "July"; break;
 case 8: selectedMonth = "August"; break;
 case 9: selectedMonth = "September"; break;
 case 10: selectedMonth = "October"; break;
 case 11: selectedMonth = "November"; break;
 case 12: selectedMonth = "December"; break;
 }
 System.out.println("You selected " + selectedMonth);
 }
}

I created a test class called monthPicker and then created an instance of
a monthPicker object. I then invoked the chooseMonth method:

 Entering an appropiate value:

 Produced the following result:

 The switch statement executes the appropriate case statement for the
integer value that was entered - on this occasion, 11 results in the
selectedMonth variable being set to November and this is then used
outwith the switch statement when we display the variable.

 Invoking the chooseMonth method again, this time passing a different
parameter such as 14 resulted in a totally different result:

 No value has ever been assigned to the selectedMonth String and, thus,
the original, blank String displays.

This oversight can be easily remedied with the provision of a catch-all
clause to our switch statement.

 The addition of one line of code to the end of our switch statement
provides our catch-all clause. This can be seen below:

default: selectedMonth = "a non existent month!"; break;

 Entering an inapropriate month number, such as 14, now results in an

altogether different result:

if or switch? if or switch?

You may find that use of switch aids readability of code. Note however,
that switch is not without limitations:

 "An if statement can be used to make decisions based on ranges of
values or conditions, whereas a switch statement can make decisions
based only on a single integer value. Also, the value provided to each
case statement must be unique."6

break; Note the use of the break; statements.

This is used so that, when the correct action has been performed, the
break statement terminates the switch statement.

Without the break statements, control will flow sequentially through
subsequent case statements. However, the following example does
demonstrate that, even this may have its uses:

 The following example makes use of case statements with the break
purposefully missing. Why? Because, depending upon the option
selected, you do want the same outcome - if the user selects any of the
months with 31 days then you want the same action to be performed - the
value of the numDays variable should be set to 31.

6 http://java.sun.com/docs/books/tutorial/java/nutsandbolts/switch.html

public class MonthPicker
{
 public MonthPicker()
 {
 // nothing to do in constructor
 }

 public void chooseMonth(int monthSelected)
 {
 int month = monthSelected;
 int year = 2000;
 int numDays = 0;

 switch (month) {
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 numDays = 31;
 break;
 case 4:
 case 6:
 case 9:
 case 11:
 numDays = 30;
 break;
 case 2:
 if(((year%4 == 0) && !(year%100 == 0)) || (year%400 == 0))
 numDays = 29;
 else
 numDays = 28;
 break;
 }
 System.out.println("Number of Days in month "
 + month + " is " + numDays);
 }
}

