
Chapter 3 - Project LabClass

Chapter 3 Book exercises:

Ex 3.1 Think again about the lab-classes project that we discussed in Chapter 1

and Chapter 2. Imagine we create a LabClass object and three Student
objects. We can then enroll all three students in that lab. Try to draw a
class diagram and an object diagram for that situation. Identify and
explain the differences between them.

Class Diagram Remember that a class diagram represents a static view - It depicts what
we have at the time of writing the program.

The diagram would show 1 Student class definition and 1 LabClass
class definition.

Object Diagram The object diagram, on the other hand, represents a dynamic view - It
depicts the situation at runtime.

The diagram would show 3 instances of Student objects and 1 instance
of a LabClass.

Chapter 3 - Project clock-display

Ex 3.2 Perform action as indicated in the text.

Ex 3.3 What happens when the setValue method is called with an illegal value?

Is this a good solution? Can you think of a better solution?

 The code for the setValue method is shown below:

public void setValue(int replacementValue)
{
 if((replacementValue >= 0) && (replacementValue < limit))
 value = replacementValue;
}

If you invoke the setValue method with an illegal value then nothing at all
happens. The check that is performed for a sensible value - i.e. one that
is greater than or equal to 0 and less than the limit - ensures that no
changes are made if an illegal value is passed.

Is this a good solution? Well it certainly stops erroneous data. However, it
could be cited as being inadequate in one respect - if an illegal value is
passed then nothing at all happens… no warning, no default value is
set, nothing at all!

Thus, there is room for improvement with the provision of an else within
the code to cope with illegal values.

Ex 3.4 What would happen if you replaced the '>=' operator in the test with '>', so
that it read:

 if((replacementValue > 0) && (replacementValue < limit))

 This would mean that 0 would not be deemed as acceptable. 1 would be
the first acceptable value.

Ex 3.5 What would happen if you replaced the '&&' operator in the test with '||', so
that it read:

 if((replacementValue >= 0) || (replacementValue < limit))

 Remember that the && operator checks to see that both conditions are
true i.e. in this case, that the replacementValue was greater than or
equal to 0 and that the replacementValue was less than the limit.

 If we change the operator to || or, then only one condition need be true
for the consequent to be performed. Obviously, this would not be desirable
for the operation of our clock, as it would 'break' the sensible behaviour
that the current code enforces.

 The result would be that the condition would always evaluate to true if
the limit is larger than or equal to 0.

Ex 3.6 Does the getDisplayValue method work correctly in all circumstances?
What assumptions are made within it? What happens if you create a
NumberDisplay with limit 800, for instance?

The code for the getDisplayValue method is shown below:

public String getDisplayValue()
{
 if(value < 10)
 return "0" + value;
 else
 return "" + value;
}

 The assumption with the getDisplayValue method is that the value will

always be a two-digit value and it is therefore coded in such a way as to
only ever add one leading zero if and when required.

 If you create a NumberDisplay object with a limit of 800 you will find that
it will enable you to set value to as high as 799. You can invoke the
getValue method and the following will be returned:

 However, as soon as value 'ticks over', hitting the 800 limit, it will then go
on to 00 as shown below:

Ex 3.7 Is there any difference in the result of writing…

 return value + " ";

 …rather than…

 return " " + value;

 …in the getDisplayValue method?

 There is no difference. Had such a change been made where the leading
0 is added then this would have made an obvious difference. However,
regardless of whether "" is added to the front or the back of the value,
nothing is actually added.

Ex 3.8 Explain the modulo operator. You may need to consult more resources
(online Java language resources, other Java books, etc) to find out the
details.

An exact definition can be found online at the following URL:

http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#24956

Ex 3.9 What is the result of the expression (8 % 3) ?

 The result is: 2

3 * 2 = 6 remainder 2.

Ex 3.10 What are all possible results of the expression (n % 5), where n is an
integer variable?

 -4, -3, -2, -1, 0, 1, 2, 3, 4

Ex 3.11 What are all possible results of the expression (n % m), where n and m
are integer variables?

]-m,m[(the range from -(m-1) to (m-1))

Ex 3.12 Explain in detail how the increment method works.

 The code for the increment method is shown below:

public void increment()
{
 value = (value + 1) % limit;
}

 As long as the value is smaller than the limit, it gets incremented by 1

(the modulo can be ignored).

When value reaches the limit, the modulo operation will result in the value
being set to 0.

So, the increment method increments value by one, until the limit is
reached, at which point it will start over at 0.

 The values alter as shown below. Note that the middle, bracketed number
should indicate to you whether it is minutes or hours that are being
incremented. Note also that I started the clock at 11:58 for the sake of
demonstrating the increment method.

min 58 (60) 59
min 59 (60) 0
hours 11 (24) 12
min 0 (60) 1
min 1 (60) 2
 etc etc etc

Ex 3.13 Rewrite the increment method without the modulo operator, using an if
statement. Which solution is better?

public void increment()
{
 value = value + 1;
 if(value >= limit)
 value = 0;
}

 Which solution is better? You may find the second of the suggested

solutions easier to follow. The first solution is certainly more concise.

Ex 3.14 Using the clock-display project in BlueJ, test the numberDisplay class
by creating a few numberDisplay objects and calling their methods.

 Perform actions as requested.

Ex 3.15 Create a ClockDisplay object by selecting the following constructor:

 new ClockDisplay()

 Call its getTime method to find out the initial time the clock has been set
to. Can you work out why it starts at that particular time?

 The initial time is displayed as shown below. As can be seen the time is
initialized to 00:00.

 Creating a ClockDisplay object using the no parameter constructor
invokes the code shown below.

As can be seen, two new NumberDisplay objects are created.

The NumberDisplay constructor method is responsible for setting both
of these NumberDisplay objects to values of 0.

public ClockDisplay()
{
 hours = new NumberDisplay(24);
 minutes = new NumberDisplay(60);
 updateDisplay();
}

 Compare the above constructor method with the following, parameter-
based constructor method. Note that the parameter-based constructor
invokes the setTime method, passing the provided parameters to the
method. These parameters are then used to set values for hour and
minute.

public ClockDisplay(int hour, int minute)
{
 hours = new NumberDisplay(24);
 minutes = new NumberDisplay(60);
 setTime(hour, minute);
}

Ex 3.16 How many times would you need to call the tick method on a newly

created ClockDisplay object to make its time reach 01:00? How else
could you make it display that time?

 Invoking the tick method 59 times produces the following:

 Invoking the tick method 60 times produces the following:

 Thus, it takes 60 clicks to get the desired reading of 01:00.

 You could get to this time a lot easier using methods available to you:

 Create a new ClockDisplay object and then invoke the getTime method -
The time should display as shown below:

 Invoke the setTime method and provide the parameters as shown below -
1 for hour and 0 for minute:

 Invoke the getTime method to ensure that the desired time has been set:

Ex 3.17 Look at the second constructor in ClockDisplays source code. Explain
what it does and how it does it.

 As mentioned previously, the second constructor in the ClockDisplay
class expects to be passed information pertaining to the required hour
and minute settings.

 The constructor initialises the time to the values passed to the method. It
uses the method setTime to set the time to the initial value.

Note that the original, no parameter constructor, simply called the
updateDisplay method.

In the second, parameter-based constructor, there is no need to call
updateDisplay because this will be done in the setTime method.

public ClockDisplay(int hour, int minute)
{
 hours = new NumberDisplay(24);
 minutes = new NumberDisplay(60);
 setTime(hour, minute);
}

Ex 3.18 Identify the similarities and differences between the two constructors. Why

is there no call to updateDisplay in the second constructor, for instance?

Similarities… The similarities are as follows:

 Both constructors create two new NumberDisplays.

 The differences between the two constructors have been detailed aready.
There is no call to the updateDisplay method in the second constructor.

Invoking the setTime method (code show below) results in the provided
parameters being set as the actual values for the hours and minutes. At
this point, having made the appropriate changes, the updateDisplay
method is then invoked.

 The first constructor calls updateDisplay and the second calls
setTime(hour, minute). In the second constructor, there is no call to
updateDisplay because this will be done in the method setTime.

public void setTime(int hour, int minute)
{
 hours.setValue(hour);
 minutes.setValue(minute);
 updateDisplay();
}

Ex 3.19 Challenge Exercise: Change the clock from a 24-hour clock to a 12-hour

clock. Be careful, this is not as easy as it might at first seem. In a 12-hour
clock the hours after midnight and after noon are not shown as 00:30, but
as 12:30. Thus the minute display shows values from 0 to 59, while the
hour display shows values from 1 to 12!

Ex 3.20 There are (at least) two ways in which you can make a 12-hour clock. One
possibility is to just store hour values from 1 to 12. On the other hand, you
can just leave the clock to work internally as a 24-hour clock, but change
the display string of the clock to show 4:23 or 4.23pm when the internal
value is 16:23. Implement both versions. Which option is easier? Which is
better? Why?

public void updateDisplay()
{
 int hour = hours.getValue();
 String suffix = "am";

 if(hour >= 12){
 hour = hour - 12;
 suffix = "pm";
 }
 if(hour == 0){
 hour = 12;
 }
 displayString = hour + "." + minutes.getDisplayValue() + suffix;
}

 Note the use of 2 local variables, hour and suffix.

The hour variable, of type int, is assigned the value of whatever is
returned by the getValue method when invoked on the hours object.

The suffix variable, of type String, is assigned the value am which will
only be changed if we have a time that requires the suffix to be pm.

The hour variable is then tested - If it is greater than 12 we subtract 12
from it to give us a 12-hour time reading instead of a 24-hour one i.e. If
the value of hour is 16 we subtract 12 and this correctly gives us the 12-
hour clock time reading of 4. Because the time was greater than 12 we
need to alter the value of suffix to pm.

If the value of hour is 0, then this indicates that, in 24-hour clock time, the
time is around midnight. Thus, we again alter hour so that it abides by
conventions of the 12-hour clock i.e. displays 12 instead of 0.

Finally, we update the ClockDisplay class instance variable
displayString. We make use of our hour and then invoke the
getDisplayValue on the minutes NumberDisplay object to give us a
correct minutes reading.

 Alternatively, we can obtain the same result with the following code:

public ClockDisplay()
{
 hours = new NumberDisplay(12); //changed
 minutes = new NumberDisplay(60);
 updateDisplay();
}

public ClockDisplay(int hour, int minute)
{
 hours = new NumberDisplay(12); //changed
 minutes = new NumberDisplay(60);
 setTime(hour, minute);
}

private void updateDisplay()
{
 int hour = hours.getValue();
 if(hour == 0)
 hour = 12;

 displayString = hour + "." + minutes.getDisplayValue();
}

 Note that both of the ClockDisplay constructor methods must be

changed to construct NumberDisplay objects with limits of only 12 hours
instead of 24 hours.

 This accordingly simplifies the updateDisplay method as the only test that
needs to be made is for an hour value of 0, in which case, the value of
hour is then changed to 12.

Chapter 3 - Project mail-system

Ex 3.21 Open the mail-system project, which you can find in the books support

material. Create a MailServer object. Create two MailClient objects.
When doing this, you need to supply the MailServer instance, which you
just created, as a parameter. You also need to specify a username for the
mail client. (a mail client is a program to read and write email. Every
instance you create represents an email program for a different user.)

Experiment with the MailClient objects. They can be used to send
messages from one mail client to another (using the sendMessage
method) and to receive messages (using the getNextMailItem or
printNextMailItem methods).

 As can be seen from the following diagram, I created a single MailServer
object, csd_mail, and two MailClient objects, Jonathan and Jim.

 Sending an email from Jonathan to Jim - Invoke the sendMessage
method and then specify to and the message.

 Jim checks his email:

 …and sees that there is an object reference i.e. there is an actual
MailItem waiting to be read.

 Highlight and then Inspect…

 As can be seen - this illustrates the values of from, to and message,just
as is the case of a real email.

 Alternatively, invoke the printNextMailItem method:

 The message is displayed in the Terminal Window:

Ex 3.22 Draw an object diagram of the situation you have after creating a
MailServer and three MailClients. Object diagrams were discussed in
section 3.6.

 The object diagram should basically show that you have one MailServer
object and three MailClient objects.

Ex 3.23 Set up a scenario for investigation: Create a mail server, and then create
two mail clients for the users 'Sophie' and 'Juan' (You should name the
instances Sophie and Juan as well, so that you can better distinguish
them on the object bench).

Then use Sophie's sendMessage method to send a message to Juan. Do
not yet read the message.

Ex 3.24 Open the editor for the MailClient class and set a breakpoint at the first
line of the printNextMailItem method, as shown in Figure 3.5.

Ex 3.25 Step one line forward in the execution of the printNextMailItem method
by clicking the Step button.

Ex 3.26 Predict which line will be marked as the next line to execute after the next

step. Then execute another single step and check your prediction. Were
you right or wrong? Explain what happened and why.

 The code for the printNextMailItem method is show below:

public void printNextMailItem()
{
 MailItem item = server.getNextMailItem(user);
 if(item == null) {
 System.out.println("No new mail.");
 }
 else {
 item.print();
 }
}

 You should have predicted that the next line of code to be performed is

the line item.print(); as shown below:

 Why? Because you purposefully sent an email, you would expect that an

email would exist. Therefore you would expect item to point to an actual
MailItem object and not to null.

Ex 3.27 Call the same method (printNextMailItem) again. Step through the
method again, as before. What do you observe? Explain why this is.

 Next time round, because there is no email, item does not point to a
MailItem object. Thus, we expect the following line to be performed:

 System.out.println("No new mail.");

 …with the following result…

Ex 3.28 Set up the same test situation as we did before. That is, send a message
from Sophie to Juan. Then invoke the printNextMailItem message of
Juan's mail client again. Step forward as before. This time, when you
reach the line:

 item.print()

 use the Step Into command instead of the Step command. Make sure
you can see the text terminal window as you step forward. What do you
observe? Explain what you see.

 You are taken step by step through the actual print method in the
MailItem class. When you reach the end of this method, then you will see
that the arrow indicating your position in the code returns to the MailClient
class. This helps us to see exactly how the classes interact with each
other.

Ex 3.29 Set a breakpoint in the first line of the sendMessage method in the
MailClient class. Then invoke this message. Use the Step Into function to
step into the constructor of the mail item. In the debugger display for the
MailItem object, you can see the instance variables and local variables
that have the same names, as discussed in section 3.12.2. Step further to
see the instance variables get initialized.

Ex 3.30 Use a combination of code reading, execution of methods, breakpoints,
and single stepping to familiarize yourself with the MailItem and
MailClient classes. Note that we have not discussed enough for you to
understand the implementation of the MailServer class just yet, so you
can ignore this for now. (You can, of course, look at it if you feel
adventurous, but don’t be surprised if you find it slightly baffling…) Explain
in writing how the MailClient and MailItem classes interact. Draw object
diagrams as part of your explanations.

 The MailClient performs as you would expect - it retrieves any email
messages for a particular user (MailItem) from the MailServer and,
further, it enables a particular user to send messages, again using the
MailServer.

Ex 3.31 Use the debugger to investigate the clock-display project. Set break-
points in the ClockDisplay constructor and each of the methods, and then
single step through them. Does it behave as you expected? Did this give
you new insights? If so, what were they?

Ex 3.32 Use the debugger to investigate the insertMoney method of the better-
ticket-machine project from Chapter 2. Conduct tests that cause both
branches of the if statement to be executed.

Ex 3.33 Add a subject line for an email to mail items in the mail-system project.
Make sure printing messages also prints the subject line. Modify the mail
client accordingly.

 This involves adding another instance variable to the MailItem class
definition - subject, of type String.

The constructor and print methods must then be adapted accordingly.

The sendMessage method in the MailClient class definition would also
need to be modified to take into account the additional parameter that is
expected for a MailItem object.

