
Chapter 2

Solutions Note that you should have a greater degree of familiarity with the BlueJ

environment by this stage and, as such, the provided solutions will be less
comprehensive than those of the previous chapter.

The expectation is that you have been able to follow through the
instructions as provided within the BlueJ text.

Project naïve-ticket-machine

Correct Project Make sure that you have started with the correct project - naïve-ticket-

machine. The purpose of the naïve-ticket-machine is to demonstrate
shortcomings in terms of the modelling of the project and to build upon
these limitations via the introduction of sensible behaviours - possible
because of the introduction of more Java code.

Many Instances In case you are having problems visualizing ticketMachine objects
consider a multi storey car park. A single class definition will provide
the 'blueprint' for the construction of the many ticketMachine objects
that will be required i.e. 2 machines per floor, 5 floors. Each of these
instances will be created from the same single class definition.

The Limitations Having created a ticketMachine object, you should have followed the
instructions and, by doing so, encountered some of the limitations of the
project. Some of these are dealt with below.

Ex 2.2 What value is returned if you check the machine's balance after it has
printed a ticket?

Solution Assuming that you entered more money than the actual cost of a
single ticket, then you would expect the result to return something
greater than 0. i.e. you would expect to see the money left after the
ticket had been paid for, money that would then either be refunded or
put towards the cost of another ticket.

However… However, as can be seen from the above result, you have been robbed!

The result returned is 0.

 If you insert too much money into the machine, it does not warn you of this
and, when you select to print a ticket, you lose any money that you have
entered over and above the cost of the ticket.

 You most certainly do not receive a refund!

 It is, however, possible to continually print tickets by calling the
printTicket method, regardless of how much - or more to the point, how
little - your current balance is.

i.e. even if you have a balance of 0 it is possible to continually print
tickets… maybe this ticket machine is not so bad after all ;O)

Ex 2.4 Try to obtain a good understanding of a ticket machine's behaviour by
interacting with it on the object bench before we start looking at how the
TicketMachine class is implemented in the next section.

Ex 2.5 When you create a different ticketMachine with a different ticket price,
the behaviours of the ticketMachine object are, as you would expect, the
same. When you print a ticket however, you will notice a difference.

 If you had two ticketMachine objects with tickets prices of 500 and 1000
cents for example. Printing tickets from each object would provide the
following result:

 Original Ticket

New Ticket

 If you have a look at the code for this method then the reason for the
differing amounts should be evident…

printTicket
Method

public void printTicket()
{
 // Simulate the printing of a ticket.
 System.out.println("##################");
 System.out.println("# The BlueJ Line");
 System.out.println("# Ticket");
 System.out.println("# " + price + " cents.");
 System.out.println("##################");
 System.out.println();

 // Update the total collected with the balance.
 total += balance;
 // Clear the balance.
 balance = 0;
}

 The line that differentiates the tickets is as follows:

 System.out.println("# " + price + " cents.");

 Note the use of concatenation - The actual value of the price attribute
will be used in the display.

Thus, we have a printTicket method that can print the correct ticket,
regardless of the price.

Ex 2.6 Write out what you think the outer layers of the Student and LabClass
classes might look like - do not worry about the inner part.

 For Student…

 public class Student
{
 //Inner part of the class omitted
}

 And for LabClass…

 public class LabClass
{
 //Inner part of the class omitted
}

Ex 2.7 Exercise 2.7 reads as follows:

From your earlier experimentation with the ticket machine objects within
BlueJ you can probably remember the names of some of the methods -
printTicket, for instance.

Look at the class definition in Code 2.1 and use this knowledge, along with
the additional information about ordering we have given you, to try to
make a list of the names of the fields, constructors and methods in the
TicketMachine class. Hint: There is only one constructor in the class.

 The fields:
 Price

balance
total

 The constructors
 TicketMachine

 The methods:
 TicketMachine - the constructor method

getPrice
getBalance
insertMoney
printTicket

Ex 2.8 The constructor method is significantly different from the other methods
contained within the class in that the constructor method has no return
type. This can be seen from the signature of the constructor method
shown below:

 public TicketMachine(int ticketCost)

 The other methods in the class all have return types, even if the return
type is void - as in the insertMoney and printTicket methods. Look at
the other methods, getPrice and getBalance. These have a return type of
int.

The constructor is different in that it has no return type. This is always
the case with the constructor method.

Note also Note also that the majority of methods will start in lowercase, as is the
case with, for example, the getPrice, getBalance and printTicket
methods.

However, because the constructor must have the exact same name as
the class name (remember that class names by convention should be
capitalised) the constructor method will also begin in uppercase i.e.
Student, Person, TicketMachine and so forth.

 The code for the constructor method is shown below.

Note the capitalisation:

 public TicketMachine(int ticketCost)
{
 price = ticketCost;
 balance = 0;
 total = 0;
}

 The method creates a ticketMachine object of a set price - the value of
ticketCost that is provided by the user and then assigned to the price
attribute - and then sets balance and total to 0.

As the ticketMachine is created new, there would be no balance and no
total as such - it would be a brand new, empty, unused ticketMachine!

Ex 2.9 Compare the getBalance method with the getPrice method. What are the
differences between them?

 The getBalance method:

 public int getBalance()
{
 return balance;
}

 The getPrice method:

 public int getPrice()
{
 return price;
}

The similarities Both methods have an int specified for the return type.

The Difference The difference is what is returned.

These are typical accessor or get methods in that they simply return the
value of the attribute in question. Therefore, the getBalance method
will return the value held by the balance attribute and the getPrice
method will return the value held by the price attribute.

Ex 2.10 If a call to getPrice can be characterized as "What do tickets cost?" how
would you characterize a call to getBalance?

Solution "What is the current balance?"

Ex 2.11 Exercise 2.11 reads as follows:

If the name of getBalance is changed to getAmount, does the return
statement in the body of the method need to be changed too? Try it out
within BlueJ.

Solution If you made the changes as indicated then the code for the method would
appear as shown below:

 public int getAmount()
{
 return balance;
}

 To test your changes you would need to then compile your code, create
an instance of a TicketMachine object and test that the getAmount
method worked in the same way as the getBalance method did.

 The 'before' and 'after' menus, obtained by right-clicking on your object,
are as shown below:

 Before After

 You should see that, despite the change in name, all else is exactly as it

was before. The call to getAmount will return the current value of the
balance field, just as a call to getBalance method did before you made
the changes.

 So, no difference!

Technically however, if the field is called balance, as it is in our example,
then getBalance is the most appropriate method name when creating a
method with the sole purpose or returning the value held in that field.

Someone used to programming in Java would likely expect a method
called getAmount to return the current value of a field named amount.

Ex 2.12 Define an accessor method, getTotal, that returns the value of the total
field.

 The code for a getTotal method is as shown below:

 public int getTotal()
{
 return total;
}

 To test, compile the class and then
create a new TicketMachine
object.

Note that you will have to insert
money and print a ticket to test
the getTotal method.

The field total is not updated until
the printTicket method is called.

Look again at the printTicket
method and see where total is
updated:

printTicket public void printTicket()
{
 // Simulate the printing of a ticket.
 System.out.println("##################");
 System.out.println("# The BlueJ Line");
 System.out.println("# Ticket");
 System.out.println("# " + price + " cents.");
 System.out.println("##################");
 System.out.println();

 // Update the total collected with the balance.
 total += balance;
 // Clear the balance.
 balance = 0;
}

 Note that the total is altered after the ticket has been printed.

 The line…

 total += balance;

 …takes the original value of total and adds the value held in balance to
total. Thus, total takes the value of what it was before plus the new
amount from the balance.

Ex 2.13 Try removing the return statement from the body of getPrice. What error
message do you see now when you try compiling the class.

Solution: If you remove the return you will get the following message when you
attempt to compile the class:

 The line is highlighted to alert you and you are informed that the line is

'not a statement'.

 If you remove the whole line, the message you will receive when
attempting to compile the class is as shown below:

 You are informed that your code is 'missing return statement'. This error

is triggered by the fact that you have specified an int for the return type
and yet opted not to return anything.

Note Note that I 'removed' the line of code by commenting it out as shown
below. This is the best way to temporarily remove lines - or blocks - of
code when you are debugging or trying something out. If you comment
the code in this manner then it is simply a matter of removing your
comment markers // to restore the code.

 //return price;

 If you were to delete the code then there is every chance that you might
forget what the code was. Therefore, debugging using comments is
recommended.

 Remember to restore the code to the way it was before progressing
further.

Ex 2.14 Compare the method signatures of getPrice and printTicket in code 2.1.
Apart from their names, what is the main difference between them?

 The respective method signatures are illustrated below:

 public int getPrice()

 …and…

 public void printTicket()

 The main difference is with regard to the return type.

The return type of int specified for the getPrice method indicates that an
integer will be returned by the getPrice method. This integer will
obviously relate to the price field of the class.

 The return type of void specified for the printTicket method indicates that
there will be no value returned.

Ex 2.15 Exercise 2.15 reads as follows:

Do the insertMoney and printTicket methods have return statements?
Why do you think this might be? Do you notice anything about their
headers that might suggest why they do not require return statements?

Solution: Neither the insertMoney nor the printTicket methods have return
statements.

These are mutator methods that are intended to perform some change to
one or more of the fields of a ticket machine object.

They are not accessor methods, used simply to access the current value
of a specific field.

Both the insertMoney and the printTicket methods have a return type of
void in their headers and, therefore, they are not expected to return any
value.

Ex 2.16 Exercise 2.16 reads as follows:

Create a ticket machine with a ticket price of your choosing. Before doing
anything else, call the getBalance method on it.

Now call the insertMoney method (Code 2.6) and give it a non-zero
positive amount of money as the actual parameter.

Now call getBalance again.

The two calls to getBalance should show different output because the call
to insertMoney had the effect of changing the machine's state via its
balance field.

 I created a ticket machine with a
ticket price of 100 cents.

Invoking the getBalance method
returns the result 0, as illustrated on
the right.

 I then invoked the insertMoney
method, entering 150 cents when
prompted.

Invoking the getBalance method
now returns a different result - 150.

 The code for the insertMoney method is illustrated below:

 public void insertMoney(int amount)
{
 balance += amount;
}

 The insertMoney method expects a parameter - amount - of type int to
be passed. The value of amount is then added to the current value of the
balance field.

Note Remember that this could also be written as:

 balance = balance + amount;

Ex 2.17 Exercise 2.17 reads as follows:

Create a ticket machine and call its insertMoney method. Check the
balance with a call to getBalance. Now call insertMoney and getBalance
again to ensure that the new balance is the sum of the two amounts
passed to the two calls to insertMoney.

 As instructed above. Ensure that the maths is correct i.e. if you invoke
insertMoney and enter 150 cents and then invoke insertMoney again but
enter 250 cents then you would expect a call to getBalance to return a
value of 400.

Ex 2.18 Now make a slight change to the insertMoney method via the BlueJ
editor. Alter the '+=' operator to '='.

Compile the class and re-run the method calls you just made on a new
ticket machine. What does the balance show now? (Don't forget to change
the operator back to '+=' once you have finished.)

 The changed method will appear as shown below:

 public void insertMoney(int amount)
{
 balance = amount;
}

Do this… Create a new TicketMachine object

getBalance - result is 0

insertMoney, for example, 500 cents

getBalance - result is 500

insertMoney, for example, 300 cents

getBalance - result is 300

Hang on, where did the previous 500 go?

What happened Removing the + from the line…

balance += amount;

…had a considerable effect.

Previously, the line added whatever value was held in amount to the
amount held in balance. With the change, the value held in amount is
simply assigned to balance.

Remember that assignation is a destructive process and, therefore, the
value previously held in balance is lost.

Remember to change the operator back to '+=' as instructed.

Ex 2.19 Add a method called prompt to the TicketMachine class. This should
have a void return type and take no parameters. The body of the method
should print something like:

 Please insert the correct amount of money.

 The code for the prompt method would appear as shown below:

 public void prompt()
{
 System.out.println("Please insert the correct
 amount of money");
}

 (Note that the String should all be on one line - I have split it because of
space limitations)

 Compile the code and then create a
TicketMachine object.

Right click on the object that you
have created and select the
prompt method from the menu.

You will see the terminal window
with the message 'Please insert
the correct amount of money' as
illustrated below.

Ex 2.20 Add a showPrice method to the TicketMachine class. This should have a

void return type and take no parameters. The body of the method should
print something like:

 The price of a ticket is xyz cents.

 …where xyz should be replaced by the value held in the price field when
the method is called.

 The code for the showPrice method would appear as shown below:

 public void showPrice()
{
 System.out.println("The price of a ticket is"
 + price + " cents");
}

 Create a ticket machine object.

Right click on the object that you
have created and select the
showPrice method from the menu.

You will see the terminal window
with the message 'The price of a
ticket is xyz cents' (where xyz is
replaced with the actual ticket price
that you entered when creating the
ticket machine object) as illustrated
below.

Ex 2.21 Create two ticket machines with differently priced tickets. Do calls to

their showPrice methods show the same output or different? How do
you explain this effect?

 Ticket Machine 1, ticket cost 500 cents:

 Ticket Machine 2, ticket cost 750 cents:

 The difference in output is due to the different values of the price field in

each of the ticket machine objects.

When you create each object, the value that you enter for the ticket price
is then assigned to the price field.

Thus, when you have different objects, with different ticket prices, the
output will be different when it makes use of that price field to determine
what is displayed.

 public void showPrice()
{
 System.out.println("The price of a ticket is"
 + price + " cents");
}

Ex 2.22 What do you think would be printed if you altered the fourth statement of
printTicket so that price also has quotes around it, as follows?

 System.out.println("# " + "price" + " cents.");

 The changes would result in the ticket shown below being displayed. As
can be seen, the actual value of the price field is no longer displayed.
Instead, price is treated like a string and is displayed as such.

Ex 2.23 What about the following version?

 System.out.println("# price cents.");

 The above code would produce exactly the same result. The code itself is
different but the result is the same - price would again be treated as a
string and the value of the price field would not be displayed.

The only difference in the above two examples is that the first one makes
use of concatenation to form the string. The second example simply
creates a string using one set of " and ".

Ex 2.24 Exercise 2.24 reads as follows:

Could either of the previous two versions be used to show the price of
tickets in different ticket machines? Explain your answer.

 I don’t think that the question is all that clear. However, the answer that I
think they are looking for is as follows:

 The whole point of the preceding exercises was to illustrate how an
instance variable - price - was used to display information pertaining to a
particular object.

i.e. in this example we had two separate TicketMachine objects, each
with different ticket prices.

Had we not used concatenation to 'pull together' the standard String
information that we wanted to display - i.e. the ticket - and the actual
value held in the price instance variable, then we would not have been
able to display accurate information for each of our TicketMachine objects.

Ex 2.25 Modify the constructor of TicketMachine so that it no longer has a
parameter. Instead, the price of tickets should be fixed at 1000 cents.
What effect does this have when you construct ticket machine objects
within BlueJ?

 public TicketMachine()
{
 price = 1000;
 balance = 0;
 total = 0;
}

 Create a new instance of a ticket
machine object.

You will see that you are no longer
prompted to enter a value for the
price of your ticket.

Calling either the getPrice or
showPrice methods will reveal that
the price of the ticket is 1000 cents.

 If you alter the constructor of TicketMachine in this way, every ticket
machine object that you create will have a ticket price of 1000 cents.

Note: Important This arguably makes the ticket machine class definition less
versatile.

Class definition
for Flat

To elaborate:

Lets create a class definition for a Flat.

Lets keep things real simple and say that we have only one instance
variable, a String named address that will hold the address of the flat.

 The code for our Flat class is very simple as shown below:

Flat class
definition

public class Flat
{
 // instance variables
 private String address;

 public Flat()
 {
 // initialise instance variables
 address = "Flat a, 10 Union Street";
 }

 public String getAddress()
 {
 return address;
 }

 public void setAddress(String newAddress)
 {
 address = newAddress;
 }
}

 Having compiled our Flat class, we can then create instances of our flat
- In modelling terms we could be constructing flats or merely
representing an existing street for example.

 Invoke the getAddress method for each instance of a flat object - the

display is always the same "Flat a, 10 Union Street"

 Because we 'hard coded' information into the constructor method for our
Flat class definition, we end up with instances of flat objects that all have
the same address - in terms of modelling multiple flats that is useless!

Each flat would be expected to have its own unique address.

The same can be said for TicketMachine objects - If we leave the ability
to determine the price open then we have a much more useful class
definition, one that can accommodate the creation of many many
TicketMachine objects, with varying ticket prices.

Note Ensure that you change your constructor method back so that it again
prompts for the entry of a value for the ticket price.

Ex 2.26 Implement a method, empty, that simulates the effect of removing all
money from the machine. This method should have a void return type,
and its body should simply set the total field to zero. Does this method
need to take any parameters? Test your method by creating a machine,
inserting some money, printing some tickets, checking the total and then
emptying the machine. Is this method a mutator or an accessor?

 The code in its simplest form:

 public void empty()
{
 total = 0;
}

 Alternatively, using the terminal window to inform the user that the
machine has been emptied. Note that by referencing the total variable, we
essentially 'check' to ensure that it has been emptied i.e. we would expect
the display always to be 0.

 public void empty()
{
 total = 0;
 System.out.println("Ticket machine emptied");
 System.out.println("Value of total now: " + total);
}

Ex 2.27 Implement a method, setPrice, which is able to set the price of tickets to a
new value.

The new price is passed in as a parameter value to the method. Test
your method by creating a TicketMachine, showing the price of tickets,
changing the price, and then showing the new price.

Is this method a mutator?

 The code for the setPrice method in its simplest form is shown below:

 public void setPrice(int newPrice)
{
 price = newPrice;
}

 Alternatively, we could ensure that the suggested newPrice is a sensible
value i.e. that it is greater than 0, a sensible check.

If the newPrice is not greater than 0 then the current price should
remain and a message to inform the user that no change was made
should be shown. The code for this is shown below:

 public void setPrice(int newPrice)
{
 if(newPrice > 0)
 price = newPrice;
 else
 System.out.println("Ticket Price must be
 greater than 0!");
}

 (Note that the String is split over two lines due to space limitations)

 Note that conditional statements are covered in greater detail in the
forthcoming pages of the chapter.

Testing this… Create a new ticket machine object.

Call the setPrice method for this
ticket machine object.

Enter an appropriate price when
prompted, as illustrated below:

 Invoke the showPrice method for your ticket machine object. Your new
ticket price will be displayed in the terminal window.

Negative Price Invoke the setPrice method but this time enter a negative amount

i.e. -100.

What happens? You should see the message shown below. Further, if you
now invoke the showPrice method, you should see that the current ticket
price remains the same as it was before you attempted to set a negative
value.

Ex 2.28 Exercise 2.28 reads as follows:

Give the class two constructors. One should take a single parameter that
specifies the price, and the other should take no parameter and set the
price to be a default value of your choosing. Test your implementation by
creating machines via the two different constructors.

 Your class definition already contains one constructor method:

 public TicketMachine(int ticketCost)
{
 price = ticketCost;
 balance = 0;
 total = 0;
}

 Add a further constructor such as the one illustrated below:

 public TicketMachine()
{
 price = 1000;
 balance = 0;
 total = 0;
}

 When you attempt to create a new ticket machine object, you will see that
you now have a choice - a ticket machine whereby you provide the
ticket cost, and a ticket machine that expects no input:

 Create two ticket machine objects, one with and one without a
provided ticket cost, and then test each ticket machine's showPrice
method to see what is displayed.

 One of the ticket machine objects should indicate a ticket price that is the
same as the price that you hard-coded

i.e. the ticket machine that does not expect to be provided with a ticket
price parameter.

 The other ticket machine should indicate a ticket price that is the same
as the price you provided when you created the object.

i.e. when you were prompted for and entered a parameter.

Project : better-ticket-machine

Correct Project Make sure that you have the correct project open:

better-ticket-machine.

Ex 2.29 Exercise 2.29 reads as follows:

Check that the behaviour we have discussed here is accurate by creating
a TicketMachine instance and calling insertMoney with various actual
parameter values.

 Check the balance both before and
after calling insertMoney.

You start with an Initial balance of
0. Insert some money i.e. 1000.
Check the balance.

You should see that the balance is
1000.

Insert some more money i.e. 350.

Check the balance yet again. The
balance should read 1350.

 Does the balance ever change in the cases where an error message is
printed? Try to predict what will happen if you enter the value zero as the
parameter and then see if you are right.

 The better-ticket-machine is, as the name suggests, better! It introduces
sensible behaviour. For example, if an error message is reported, no
changes are made. Further, if you enter 0 as the parameter to the
insertMoney method, you will see the following display:

 Check the code of the insertMoney method to see why this happens:

 public void insertMoney(int amount)
{
 if(amount > 0){
 balance += amount;
 }
 else{
 System.out.println("Use a positive amount: " +
 amount);
 }
}

 The insertMoney method makes use of a conditional statement - an if ..
else - to check that the amount of money entered is greater than 0 i.e.
that the amount entered is not a negative amount.

 As long as the amount of money entered is greater than 0, then the
amount is added to the value of the current balance.

Remember Remember that the line…

 balance += amount;

 Could be written as follows….

 balance = balance + amount;

 The second format is, perhaps, more obvious in terms of exactly what is
happening to the balance.

 If the amount of money entered is not greater than 0, then an appropriate
message - 'Use a positive amount' - is displayed in the terminal window.

Note also… Note also that, where the alternative action is performed, there is no
change made to the balance whatsoever - it remains the same as before.

Ex 2.30 Predict what you think will happen if you change the text in insertMoney
to use the greater-than or equal-to operator.

 if(amount >= 0)

 Check your predictions by running some tests. What difference does it
make to the behaviour of the method?

 The insertMoney method no longer objects to the value 0 being entered.
Subsequent calls to the getBalance method show that no changes are
made to the value held in balance when 0 is entered.

 The error message experienced previously is now displayed only when
the user attempts to enter a negative amount as a ticket price.

Ex 2.31 Exercise 2.31 reads as follows:

In the shapes project we looked at in Chapter 1 we used a boolean field
to control a feature of the circle objects. What was that feature? Was it
well suited to being controlled by a type with only two different values?

 The boolean field used in the circle class definition of the shapes project
was isVisible.

 private boolean isVisible;

 The name of the field speaks for itself - It describes the visibility (or
otherwise) of the shape.

 If we look at the constructor method for the Circle class, we see that the
initial visibility is set to false.

Thus, when working with the Circle and, indeed, any of the other shapes,
we have to actively set the visibility to true when we want to see an
instance of the shape in question.

 public Circle()
{
 diamter = 30;
 xPosition = 20;
 yPosition = 60;
 color = "blue"
 isVisible = false;
}

 This is an appropriate use of a boolean.

After all, the circle could only ever be visible or invisible - there is no in-
between status that could apply.

Ex 2.32 Exercise 2.32 reads as follows:

In this version of printTicket we also do something slightly different with
the total and balance fields. Compare the implementation of the method
in Code 2.1 with that in Code 2.8 to see whether you can tell what those
differences are. Then check your understanding by experimenting within
BlueJ.

 The code for the method in question is as follows:

 public void printTicket()
{
 if(balance >= price) {
 // Simulate the printing of a ticket.
 System.out.println("##################");
 System.out.println("# The BlueJ Line");
 System.out.println("# Ticket");
 System.out.println("# " + price + " cents.");
 System.out.println("##################");
 System.out.println();

 // Update the total collected with the price.
 total += price;
 // Reduce the balance by the price.
 balance -= price;
 }
 else {
 System.out.println("You must insert at least: "
 + (price - balance) +
 " more cents.");
 }
}

 (Note that the code to be performed as the alternative action has been
split over three lines due to space limitations)

 The 'new' printTicket method differs in such that the code incorporates
sensible checks.

For example, before printing a ticket, the printTicket method actually
checks to see if the current value of the balance is greater than or equal to
the price of a ticket.

 if(balance >= price)

 This is sensible behaviour - after all, where in life do you get away with
paying less than the actual cost of something?

Further, The balance is not simply set to 0 once a ticket has been printed.
The actual cost of the ticket is deducted from the balance.

 balance -= price;

 Remember that this could also be written as follows:

 balance = balance - price;

 This may be more obvious in terms of the action performed. The actual
price of a ticket is subtracted from the balance and this new value is
then assigned as the value of balance. Thus, we maintain an accurate
(and honest!) account of the balance.

If the balance were greater than the ticket price, the user would find that
the difference remained. They would no longer be 'ripped off'!

 This situation is further attained via the provision of a refundBalance
method, enabling the user to obtain any money left in the balance field.

 public int refundBalance()
{
 int amountToRefund;
 amountToRefund = balance;
 balance = 0;
 return amountToRefund;
}

 A local variable is declared - amountToRefund.

This does exactly as its name suggests. It holds the value that is to be
refunded.

If we are requesting a refund then obviously the refund is the current
value of balance.

Thus, the value held in balance is assigned to amountToRefund. Having
done this, we can safely set balance to 0 without fear of short-changing
our customer!

We then return the amountToRefund.

 The insertMoney method is also different. The amount of money inserted
is checked to ensure that it is a positive amount - i.e. amount is greater
than 0 - This represents another sensible check. After all, it is not possible
to insert a negative amount of money!

 public void insertMoney(int amount)
{
 if(amount > 0) {
 balance += amount;
 }
 else {
 System.out.println("Use a positive amount: "
 + amount);
 }
}

Ex 2.33 Exercise 2.33 reads as follows:

After a ticket has been printed, could the value in the balance field ever
be set to a negative value by subtracting price from it? Justify your
answer.

 No. There is no opportunity for this situation to occur. The sensible checks
introduced in the better-ticket-machine prevent this kind of behaviour
from occuring.

One of these is a check to ensure that a ticket is only printed if the
balance is greater than or equal to the actual cost of a ticket.

 public void printTicket()
{
 if(balance >= price) {
 //code here…

 The first thing that the 'new' printTicket method does is to check that the
balance is either greater than or equal to the price of a ticket.

As a result, there should never be a situation whereby a ticket is printed
without sufficient funds to pay for it - the user may end up with a
balance of 0 but that is as low as balance will go and is perfectly
acceptable. There are no opportunities for a negative balance.

Ex 2.34 Why does the following version of refundBalance not give the same
result as the original?

 public int refundBalance()
{
 balance = 0;
 return balance;
}

 The original version of refundBalance is shown below:

 public int refundBalance()
{
 int amountToRefund;
 amountToRefund = balance;
 balance = 0;
 return amountToRefund;
}

 The amended version of refundBalance sets the variable balance to a
value of 0 and then returns balance, complete with its 0 value - hardly a
refund!

The original version makes use of a local variable, amountToRefund,
which is defined within the refundBalance method and is then used to
hold the value of balance.

To simulate an actual refund, balance is then set to 0 and the value that
was previously held in balance, but that is now held in amountToRefund,
is returned.

 Which tests can you run to demonstrate that it does not?

 Make the changes to the refundBalance method as shown below. I would
recomend commenting out the original code so that it can be easily
restored once you have finished testing.

Make the
changes…

public int refundBalance()
{
 /** int amountToRefund;
 * amountToRefund = balance;
 * balance = 0;
 */ return amountToRefund;

 balance = 0;
 return balance;
}

Compile… Compile the class and then create a TicketMachine object.

Insert more than enough money to pay for a ticket.

Invoke the printTicket method. This should buy you a ticket.

You should then have some money left over.

Invoke the refundBalance method.

Thanks to the changes that you have made, you should see the following
display. Consider yourself robbed!

 With the previous example of the code, you would, at this point, have seen
the actual remaining money once you had paid for your ticket.

Restore Remember to restore the method to its original state.

Ex 2.35 Exercise 2.35 reads as follows:

What happens if you try to compile the TicketMachine class with the
following version of refundBalance:

 public int refundBalance()
{
 return balance;
 balance = 0;
}

 With the code shown above, you will get the following result when you
attempt to compile. (Note that I have again maintained the original code
using comments so that it can easily be restored at a later point).

 Click on the question mark button in the bottom right hand

corner of the BlueJ window:

 You have an unreachable
statement. This is because the
return statement in the previous line
essentially quits the method.

The line…

balance = 0;

…is never reached!

 What do you know about return statements that helps to explain why this

version does not compile?

Solution… To quote from the book:

 "Where a method contains a return statement, it is always the final
statement of that method, because no further statements in that
method will be executed once the return statement is executed."1

 This requires no further explanation!

Ex 2.36 Exercise 2.36 reads as follows:

Add a new method, emptyMachine, that is designed to simulate
emptying the machine of money.

It should both return the value in total and reset total to be zero.

 public int emptyMachine()
{
 int amountEmptied = total;
 total = 0;
 return amountEmptied;
}

 The way I have done this is similar to the approach employed in the
refundBalance method. A local variable is used in the same way as in
the refundBalance method.

1 Barnes, D.J. & Kolling, M; Objects First With Java, A Practical Introduction Using BlueJ; p28

Ex 2.37 Is emptyMachine an accessor, a mutator, or both?

 The emptyMachine method does indeed access a value held in one of
the objects instance variables - total.

However, it does this indirectly, through the assignation of the value held
to another, locally defined variable.

The instance variable total is reset to zero. Thus, the method could be
thought of as a mutator - it mutates/changes the value of total.

Ex 2.38 Exercise 2.38 reads as follows:

Rewrite the printTicket method so that it declares a local variable,
amountLeftToPay. This should then be initialized to contain the
difference between price and balance.

Rewrite the test in the conditional statement to check the value of
amountLeftToPay. If its value is less than or equal to zero, a ticket should
be printed, otherwise an error message should be printed stating the
amount still required. Test your version to ensure that it behaves in exactly
the same way as the original version.

Solution The code for this is as shown below:

 public void printTicket()
{
 int amountLeftToPay = price - balance;
 if(amountLeftToPay <= 0) {
 // Simulate the printing of a ticket.
 System.out.println("##################");
 System.out.println("# The BlueJ Line");
 System.out.println("# Ticket");
 System.out.println("# " + price + " cents.");
 System.out.println("##################");
 System.out.println();

 // Update the total collected with the price.
 total += price;
 // Reduce the balance by the prince.
 balance -= price;
 }
 else {
 System.out.println("You have "
 + amountLeftToPay
 + " still to pay.");
 }
}

Ex 2.39 Exercise 2.39 reads as follows:

Draw a picture of the form shown in Figure 2.3 representing the initial
state of a student object following its construction with the following actual
parameter values:

 new Student("Benjamin Jonson", "738321")

Solution

Ex 2.40 What would be returned by getLoginName for a student with the name
"Henry Moore" and the id "557214"?

 As shown above, the login name of Henr557 is returned for a student
named "Henry Moore" with the id "557214".

 Why?

 public String getLoginName()
{
 return name.substring(0,4) + id.substring(0,3);
}

 The getLoginName method takes the name and the id Strings and then,
using substring, obtains parts of the Strings i.e. starting at position 0, 4
characters are taken from the name String. Starting at position 0, three
characters are taken from the id String.

Thus, we end up with: Henr557

Ex 2.41 Create a student with name "djb" and id "859012". What happens when
getLoginName is called on this student? Why do you think this is?

 When you attempt to call the getLoginName method for the student with
name "djb" and id "859012" you get the following error message:

 The problem is that you are attempting to access a character within the
name String that does not exist i.e. there are only 3 characters in the
String djb.

Ex 2.42 Exercise 2.42 reads as follows:

The String class defines a length accessor method with the following
signature:

 /**
 * Return the number of characters in this string.
 * /
 public int length()

 Add conditional statements to the constructor of Student to print an error
message if either the length of the fullName parameter is less than four
characters or the length of the studentId parameter is less than three
characters.

However, the constructor should still use those parameters to set the
name and id fields, even if the error message is printed. Hint: use if
statements of the following form (that is, having no else part) to print the
error messages.

 if (perform a test on one of the parameters)
{
 print an error message if the test gave a true result
}

 See Appendix C for further details of the different types of if statement, if
necessary.

Ambiguity This question is perhaps slightly ambiguous??? I read it and produced the
following as my suggested solution:

 Note that my suggested solution checks both the fullName and the
studentID parameters that are passed to the constructor method and
displays messages accordingly if they are less than 4 and less than 3
characters respectively.

Note, however, that I still assign the parameters, irrespective of their
length.

Amended
Student
constructor
method

public Student(String fullName, String studentID)
{
 if(fullName.length() < 4)
 System.out.println("Name provided is too
 short");
 name = fullName;
 if(studentID.length() < 3)
 System.out.println("ID provided is too
 short");
 id = studentID;
 credits = 0;
}

Ex 2.43 Challenge Exercise: Modify the getLoginName method of Student so
that it always generates a login name, even if either of the name and id
fields is not strictly long enough. For strings shorter than the required
length, use the whole string.

Solution My suggested solution is shown below:

 public String getLoginName()
{
 String loginName = "";
 if(name.length() >= 4)
 loginName = name.substring(0,4);
 else
 loginName = name;
 if(id.length() >= 3)
 loginName += id.substring(0,3);
 else
 loginName += id;
 return loginName;
}

 The first thing that I have done is to establish a local variable, of type
String, called loginName.

I then perform some simple tests to build the necessary login name.

If the respective name or id String is of the correct length or above, then
I make use of this in the generation of the login name.

In the event that the provided details are inadequate, I simply add the
information that has been provided to the login name string.

Finally, I return the loginName String.

Ex 2.44 Below is the outline for a Book class, which can be found in the book-
exercise project. The outline already defines two fields and a
constructor to initialize the fields. In this exercise and the next few, you
will add further features to the class outline.

 The provided code is as follows:

/**
 * A class that maintains information on a book.
 * This might form part of a larger application such
 * as a library system, for instance.
 *
 * @author (Insert your name here.)
 * @version (Insert today's date here.)
 */
class Book
{
 // The fields.
 private String author;
 private String title;

 /**
 * Set the author and title fields when this object
 * is constructed.
 */
 public Book(String bookAuthor, String bookTitle)
 {
 author = bookAuthor;
 title = bookTitle;
 }

 // Add the methods here ...
}

Add two accessor methods to the class - getAuthor and getTitle - that
return the author and title fields as their respective results. Test your
class by creating some instances and calling the methods.

getAuthor public String getAuthor()
{
 return author;
}

getTitle public String getTitle()
{
 return title;
}

Ex 2.45 Add two methods, printAuthor and printTitle, to the outline Book class.
These should print the author and title fields, respectively, to the terminal
window.

printAuthor public void printAuthor()
{
 System.out.println("Author: " + author);
}

printTitle public void printTitle()
{
 System.out.println("Title: " + title);
}

Ex 2.46 Add a further field, pages, to the Book class to store the number of
pages. This should be of type int, and its initial value should be passed to
the single constructor, along with the author and title strings. Include an
appropriate getPages accessor method for this field.

 First, add a pages attribute to the list of instance variables for the class:

 // The fields.
 private String author;
 private String title;
 private int pages;

 Next, amend the constructor method for the class so that information
pertaining to the number of pages can be passed to the constructor:

public Book(String bookAuthor, String bookTitle, int numberOfPages)
 {
 author = bookAuthor;
 title = bookTitle;
 pages = numberOfPages;
 }

Ex 2.47 Add a method, printDetails, to the Book class. This should print details of

the author, title and pages to the terminal window.

It is your choice how the details are formatted. For instance, all three items
could be printed on a single line, or each could be printed on a separate
line. You might also choose to include some explanatory text to help a
user work out which is the author and which is the title, for example:

 Title: Robinson Crusoe, Author: Daniel Defoe, Pages: 232

public void printDetails()
{
 System.out.println("Title: " + title + ", Author: "
 + author + ", Pages: " + pages);
}

Ex 2.48 Add a library field, refNumber, to the Book class.

This field can store a reference number for a library, for example. It should
be of type String and initialized to the zero length string (" ") in the
constructor as its initial value is not passed in a parameter to the
constructor.

Instead, define a mutator for it with the following signature:

 public void setRefNumber(String ref)

 The body of this method should assign the value of the parameter to the
refNumber field. Add a corresponding getRefNumber accessor to help
you check that the mutator works correctly.

 First, add refNumber to the instance variables for the class:

 private String refNumber;

 Next, modify the constructor method for the class so that refNumber is
initialised to be a blank String:

public Book(String bookAuthor, String bookTitle, int numberOfPages)
 {
 author = bookAuthor;
 title = bookTitle;
 pages = numberOfPages;
 refNumber = "";
 }

 The required mutator and accessor methods are included below:

public void setRefNumber(String ref)
{
 refNumber = ref;
}

public String getRefNumber()
{
 return refNumber;
}

Ex 2.49 Modify your printDetails method to include printing the reference number.

However, the method should print the reference number only if it has been
set - that is, the refNumber string has a non-zero length. If it has not been
set, then print the string "zzz" instead. Hint: Use a conditional statement
whose test calls the length method on the refNumber string.

 The suggested solution for the printDetails method is shown below:

public void printDetails()
{
 String printThisString = "Title: " + title + ", Author: "
 + author + ", Pages: " + pages
 + ", Reference Number: ";
 if(refNumber.length() != 0)
 printThisString += refNumber;
 else
 printThisString += "zzz";
 System.out.println(printThisString);
}

Ex 2.50 Modify your setRefNumber mutator so that it sets the refNumber field

only if the parameter is a string of at least three characters. If it is less than
three, then print an error message and leave the field unchanged.

 The suggested solution for the modified setRefNumber method is
provided below: The thing to note is that, in this method, it is the
parameter that is passed into the method - ref - that is being checked for
length.

public void setRefNumber(String ref)
{
 if(ref.length() < 3)
 System.out.println("Error, Reference is too short");
 else
 refNumber = ref;
}

Ex 2.51 Add a further integer field, borrowed, to the Book class. This keeps a
count of the number of times a book has been borrowed.

 private int borrowed;

Note -
Assumption

Note that the book does not explicitly state to do this but I would
recommend that you set borrowed to 0 within the constructor method for
the class. After all, when the book object is first created, it will not yet
have been borrowed.

Add the following line to the constructor method:

 borrowed = 0;

 Add a mutator, borrow, to the class. This should update the field by 1
each time it is called.

 public void borrow()
{
 borrowed += 1;
}

 Include an accessor, getBorrowed, that returns the value of this new field

as its result.

 public int getBorrowed()
{
 return borrowed;
}

 Modify printDetails so that it includes the value of this field with an
explanatory piece of text. Note that I have done this on a separate line.
The String starts with \n to force a new line.

public void printDetails()
{
 String printThisString = "Title: " + title + ", Author: "
 + author + ", Pages: " + pages
 + ", Reference Number: ";
 if(refNumber.length() != 0)
 printThisString += refNumber;
 else
 printThisString += "zzz";
 printThisString += "\nThis book has been borrowed "
 + borrowed + " times.";
 System.out.println(printThisString);
}

Ex 2.52 Challenge Exercise: Create a new project, heater exercise, within BlueJ.

Edit the details in the project description - the text note you see in the
diagram.

Create a class, Heater, that contains a single integer field, temperature.
Define a constructor that takes no parameters. The temperature field
should be set to the value 15 in the constructor. Define the mutators
warmer and cooler, whose effect is to increase or decrease the value of
temperature by 5° respectively. Define an accessor method to return the
value of temperature.

 My suggested solution is shown below:

/**
 * Simulation of a simple Heater.
 *
 * @author (Jonathan J Mackintosh)
 * @version (v1.0, 28th Oct 2003)
 */
public class Heater
{
 // instance variables
 private int temperature;

 /**
 * Constructor for objects of class Heater
 */
 public Heater()
 {
 // initialise instance variables
 temperature = 15;
 }

 public void warmer()
 {
 temperature += 5;
 }

 public void colder()
 {
 temperature -= 5;
 }

 public int getTemperature()
 {
 return temperature;
 }
}

Ex 2.53 Challenge Exercise: modify your Heater class to define three new integer

fields: min, max and increment. The values of min and max should be
set by parameters passed to the constructor. The value of increment
should be set to 5 in the constructor. Modify the definitions of warmer and
cooler so that they use the value of increment rather than an explicit value
of 5. Before proceeding further with this exercise, check that everything
works as before. Now modify the warmer method so that it will not allow
the temperature to be set to a value greater than max.

Similarly modify cooler so that it will not allow temperature to be set to a
value less than min. Check that the class works properly.

Now add a method, setIncrement, that takes a single integer parameter
and uses it to set the value of increment. Once again, test that the class
works as you would expect it to by creating some Heater objects within
BlueJ.

My suggested solution is shown below:

/**
 * Simulation of a simple Heater.
 *
 * @author (Jonathan J Mackintosh)
 * @version (v1.0, 28th Oct 2003)
 */
public class Heater
{
 // instance variables
 private int temperature;
 private int min;
 private int max;
 private int increment;

 /**
 * Constructor for objects of class Heater
 */
 public Heater(int minValue, int maxValue)
 {
 // initialise instance variables
 min = minValue;
 max = maxValue;
 increment = 5;
 temperature = 15;
 }

 public void warmer()
 {
 if(temperature + increment > max)
 System.out.println("Unable to increase temperature");
 else
 temperature += increment;
 }

 public void colder()
 {
 if(temperature - increment < min)
 System.out.println("Unable to decrease temperature");
 else
 temperature -= increment;
 }

 public int getTemperature()
 {
 return temperature;
 }

 public void setIncrement(int incrementAmount)
 {
 increment = incrementAmount;
 }
}

 Do things still work as expected if a negative value is passed to the

setIncrement method?

 Things most definitely do not work as expected if a negative value is
passed to the setIncrement method.

If a negative value is passed and then assigned, invoking the colder
method has the effect of increasing the temperature and invoking the
warmer method has the effect of decreasing the temperature.

 Add a check to this method to prevent a negative value from being
assigned to increment.

My suggested solution is shown below:

public void setIncrement(int incrementAmount)
{
 if(incrementAmount < 0)
 System.out.println("Unable to set increment amount.");
 else
 increment = incrementAmount;
}

