
Chapter 1

Chapter 1 Note that the majority of the actions and exercises can be completed

simply by following the instructions in the book.

The following consists of the breaking down of code that you will have
seen while doing the exercises and, also, any additional comments
deemed necessary.

Project Shapes

Project Shapes Project Shapes

Note Ignore the class definition for the Canvas class at the moment. It includes

elements of Java over and above our current level. Suffice to say that it
provides us with a work area upon which to work with our shapes.

Classes Look at the class definitions for the 3 shapes - Circle, Square & Triangle:

Circle Class definition for a Circle

Attributes private int diameter;
private int xPosition;
private int yPosition;
private String color;
private boolean isVisible;

 diameter - determines the size of the circle
 xPosition & yPosition - determines the placement of the circle
 color - determines the colour of the circle
 isVisible - determines whether the circle is visible or not

Constructor public Circle()

{
 diameter = 30;
 xPosition = 20;
 yPosition = 60;
 color = "blue";
 isVisible = false;
}

 The constructor method for Circle takes no parameters. It assigns the
following values:

 diameter 30
 xPosition 20
 yPosition 60
 color "blue"
 isVisible false

 Note that invoking the Circle constructor method twice will result in the

creation of 2 separate Circle objects but the state of these two objects
will be exactly the same - they will both have a diameter of 30, an
xPosition of 20, yPosition of 60, colour blue and be invisible.

 This will only change when you invoke the behaviours or methods of the
respective Circle object.

 Invoking the behaviours available to you will then alter the state of the
respective Circle object.

Methods Note that you are not expected to be familiar with the code contained
within the methods at this stage.

Benefit However, you will very likely benefit from attempting to analyse the
respective methods in terms of their associated behaviour, as has
been done with the example below:

moveVertical public void moveVertical(int distance)
{
 erase();
 yPosition += distance;
 draw();
}

 The above method, moveVertical, moves
the circle vertically as follows:

Entering a positive value i.e. 20 moves the
circle downwards whilst entering a
negative value i.e. -20 moves the circle
upwards.

As can be seen from the method signature
there is no return type - void is specified
- and the method expects to be passed a
parameter of type int.

 Note that the first line of the body of the method is a call to another
method that has been defined within the Circle class - erase()

The erase() method does as its name suggests - it erases the object from
its current position before moving it to its new position. The value of
yPosition is then increased by the amount of the distance and a call to
yet another method - the draw() method - is made.

Have a look Have a look at the various methods that have been defined and see what
the associated code for a particular behaviour looks like.

If there is a linkage such as that shown in the example above - i.e. one
method calls another method - then follow the linkage.

If you do not follow the linkage then you will be left with only a limited
understanding of how a particular behaviour is performed.

Square Class definition for a Square

Attributes private int size;
private int xPosition;
private int yPosition;
private String color;
private boolean isVisible;

 size - determines the size of the square
 xPosition & yPosition - determines the placement of the square
 color - determines the colour of the square

 isVisible - determines whether the square is visible or not

Constructor public Square()
{
 size = 30;
 xPosition = 60;
 yPosition = 50;
 color = "red";
 isVisible = false;
}

 As with the constructor for Circle, no parameters are passed.

The object is created with the values shown above and, as such, two or
more instances of a Square object will be created with the exact same
state i.e. size 30, xPosition 60 and so on.

 Again as before, the state of two or more Square objects will remain the
same until you invoke the behaviours or methods of the respective
Square object.

Methods As with the Circle, you are not expected to be able to identify exactly what
is happening in the code. However, I would stress that it is again worth
looking at the respective methods to see how they are coded.

 The following method is more complex than I would expect you to feel
happy with at this moment in time. However, by breaking it down into
constituent parts, we can simplify the workings of the method
considerably.

 The method is passed a parameter - distance - that is used to move the
object horizontally.

Local Variable The first line of the method body declares a local variable of type int
called delta. Note that this particular method moves the object not only
horizontally but also slowly. This is achieved by moving the object one
pixel at a time and this is where the local variable delta finds its use.

Conditional
Behaviour

If the parameter entered by the user is negative i.e. it is less than 0
(distance < 0), then delta is set to -1.

If this is not the case, the else part, then delta is set to 1.

Look at the last bit of code. You will very likely not be familiar with this
piece of code. It is a loop. Suffice to say at the moment that the loop
starts, alters the xPosition of the object, and then invokes the draw()
method of the class.

Note that the loop will continue, over and over, until it has moved the
object the correct distance. (Loops will be covered in detail shortly.)

However, the use of delta should now be obvious - In the course of this
continuous looping, the objects xPosition is continuously altered - by
delta.

Remember that we set delta to be either 1 or -1 depending upon the
original input from the user.

SlowMove
Horizontal

public void slowMoveHorizontal(int distance)
{
 int delta;

 if(distance < 0)
 {
 delta = -1;
 distance = -distance;
 }
 else
 {
 delta = 1;
 }

 for(int i = 0; i < distance; i++)
 {
 xPosition += delta;
 draw();
 }
}

Continue
Looking

As with the Circle, have a look through the various methods that have
been defined for Square.

Triangle Class definition for a Triangle

Attributes private int height;
private int width;
private int xPosition;
private int yPosition;
private String color;
private boolean isVisible;

 height and width - determines the size of the Triangle (height & width)
 xPosition & yPosition - determines the placement of the Triangle
 color - determines the colour of the Triangle
 isVisible - determines whether the Triangle is visible or not

Constructor public Triangle()

{
 height = 30;
 width = 40;
 xPosition = 50;
 yPosition = 15;
 color = "green";
 isVisible = false;
}

 As with the constructor for Circle and Square, no parameters are
passed.

The object is created with the values shown above and, as such, two or
more instances of a Triangleobject will be created with the exact same
state i.e. height and so on.

 Again as before, the state of two or more Triangle objects will remain the
same until you invoke the behaviours or methods of the respective
Triangle object.

Methods Yet again, I would stress that it is worth having a look through the
available behaviours and the respective code for the behaviours.

changeSize public void changeSize(int newHeight, int newWidth)
{
 erase();
 height = newHeight;
 width = newWidth;
 draw();
}

 The nature of the changeSize method should be evident from its name - it
enables the user to change the size of their Triangle object.

Parameters To do this, it requires that two parameters be provided - for the height
and width of the Triangle object respectively.

 The original Triangle object is erased with a call to the erase() method,
the height and width attributes of the object are changed according to the
provided values, and, finally, the draw() method is invoked.

Ex 1.9 Exercise 1.9 reads as follows:

Use the shapes from the shapes project to create an image of a house
and a sun, similar to that shown in Fig 1.7. While you are doing this, write
down what you have to do to achieve this. Could it be done in different
ways?

Solution Note that there are any number of ways that you could complete this,
depending upon how and when you invoke the behaviours that are
available to you. However, the fundamentals of the problem are as
follows:

Requirements You will require the following objects:

1 Circle
2 Squares
1 Triangle

Visibility You will need to invoke the makeVisible method for each of the objects
that you have created.

Colours Amend the colours accordingly i.e. so that the sun is yellow.

Size Amend the sizes accordingly i.e. so that one square is large enough to
form the walls of the house whilst the other square is small enough to be
used as a window.

Move Amend the positions accordingly i.e. so that the sun is in the top right
hand corner of the picture, so that the triangle sits in the approximate
position for a roof etc etc. (Getting the positionin correct is the worst bit)

 Note that you will have to play about for a while to get a respectable
looking picture! It is a trial and error process! Here is my effort and I am
not saying how long this took!!!

Project Picture

Project Picture Open the picture project.

Note that the initial environment appears as shown below:

Note As before, ignore the class definition for the Canvas class at the moment.

Why the arrows? Why the arrows?

 The arrows denote linkages within the classes. In this particular instance,
the Picture class uses objects of type Square, Circle and triangle.

 Note that a use relationship/dependency can be inserted using the button
shown below. Hovering over the button with your mouse causes an
appropriate 'tool tip' (shown right) to display.

 Create an instance of class Picture and invoke its draw method.

Also, try out the setBlackAndWhite and setColor methods.

Ex 1.11 How do you think the Picture class draws the picture?

 It should hopefully be apparent to you that, at the lowest level, the picture
is merely a composite of squares, triangles and circles.

Specifically, the picture is a composite of 2 squares, a triangle, and a
circle - the exact same composite that you had by the time you had
finished working with the Shapes project.

In terms of Java, we can consider that the picture object is composed of
two square objects - one for the walls and one for the window - a triangle
object, and a circle object.

Object
Composition

This is object composition, where one object is composed of other
objects.

Important To reiterate:

"The important point here is: objects can create other objects and they can
call each other's methods."1

Picture class Look at the code for the Picture Class:

First we have a comment:

/**
 * This class represents a simple picture. You can draw the picture using
 * the draw method. But wait, there's more: being an electronic picture, it
 * can be changed. You can set it to black-and-white display and back to
 * colors (only after it's been drawn, of course).
 *
 * This class was written as an early example for teaching Java with BlueJ.
 *
 * @author Michael Kolling and David J. Barnes

1 Barnes, D.J. & Kolling, M; Objects First With Java, A Practical Introduction Using BlueJ; p11

 * @version 1.1 (24 May 2001)
 */

Then we have the beginning of the class definition for the Picture class.

public class Picture
{

This is followed by the attributes / fields / instance variables for the Picture class.

 private Square wall;
 private Square window;
 private Triangle roof;
 private Circle sun;

The attributes:

Note that the instance variables for the Picture class are as follows (remember that the
Picture class deals with object composition, whereby one object - the Picture object - is
composed of other objects - 2 Square objects, a Triangle object and a Circle object):

One Square object with the reference wall.
One Square object with the reference window.
One Triangle object with the reference roof.
One Circle object with the reference sun.

The attributes are followed by a comment denoting the start of the constructor method for the
Picture class.

/**
 * Constructor for objects of class Picture
 */

This is followed by the constructor for the Picture class:

public Picture()
{
 // nothing to do...
 //instance variables are automatically set to null
}

As can be seen, in this instance the constructor method does nothing. It is not until the user
invokes the draw method that things start to happen as can be seen from the following code:

First comes the comment to denote the start of the draw method:

/**
 * Draw this picture.
 */

This is followed by the method signature. As can be seen, there are no parameters passed
to the draw method.

public void draw()
{

Note that this method makes use of the object references that have been defined - wall,
window, roof and sun.

The method invokes methods defined in class Square, Circle and Triangle so that the state
of the objects can be altered - into something that resembles the desired picture.

The code itself is similar in terms of what it does - it creates the actual objects that we
created references for in the class attributes - making use of the new keyword.

For example, the line private Square wall; created a reference called wall to an object
of type Square. However, it is not until the line wall = new Square(); that an actual
object of type Square is created.

 wall = new Square();
 wall.moveVertical(80);
 wall.changeSize(100);
 wall.makeVisible();

These above four lines perform the following actions:

The reference - wall - that we had created for objects of type Square is made to point to a
new Square object.

The three following lines then invoke various methods that are available to objects of type
Square - moveVertical, changeSize and makeVisible, passing appropriate parameters
where required.

The end result is to construct the wall needed for the house in our Picture object.

Note that this demonstrates an object, in this case a Picture object, invoking the methods of
another object, the Square object that has been used as the wall of the house in the Picture.

 window = new Square();
 window.changeColor("black");
 window.moveHorizontal(20);
 window.moveVertical(100);
 window.makeVisible();

The above five lines perform essentially the same task. As with the wall reference variable,
the reference variable window is made to point to a new Square object that is created.

Again as before, the various methods available to objects of type square are invoked and
appropriate parameters are passed where required.

The end result is to construct the window needed for the house in our Picture object.

 roof = new Triangle();
 roof.changeSize(50, 140);
 roof.moveHorizontal(60);
 roof.moveVertical(70);
 roof.makeVisible();

 sun = new Circle();
 sun.changeColor("yellow");
 sun.moveHorizontal(180);
 sun.moveVertical(-10);
 sun.changeSize(60);
 sun.makeVisible();

The above code performs the same task for the sun and roof, invoking the available methods
on the Triangle and Circle objects respectively.

The end result is the construction of the final components required for our Picture object.

The code to the right, for example,
determines the colour of the sun object in
the Picture - yellow.

Finally, we have the end of the draw method, denoted by the terminating parentheses }

}

The following method, setBlackAndWhite, enables the user to change the colour picture to
one that is black and white only.

The wall reference is checked to see if it is not null. If it is null then this means that it does
not currently point to a particular Square object. In other words, the draw method that we
have just looked at will not have been called. If it had been called then the wall reference
variable would have been pointed to a new Square object.

If there is no picture, then there is no point in changing it to black and white!

Consider what is being tested by the conditional behaviour here… if the wall reference
variable is not null.. in other words, if it does point to a particular Square object, then the
Picture has been painted, so it does make sense to perform the actions of the
setBlackAndWhite method and change the colour of the objects in the Picture.

As long as the condition evaluates to true, then the actions will be performed. In this case,
the actions are calls to invoke the changeColor method available to Square, Triangle and
Circle objects.

As can be seen, the String parameter "black" (or "white" for the window) is passed to the
changeColor method in each case.

/**
 * Change this picture to black/white display
 */
public void setBlackAndWhite()
{
 if(wall != null) // only if it's painted already...
 {
 wall.changeColor("black");
 window.changeColor("white");
 roof.changeColor("black");
 sun.changeColor("black");
 }
}

The following method reverses the effects of invoking the setBlackAndWhite method,
returning the objects in the Picture to their original colours:

/**
 * Change this picture to use color display
 */

public void setColor()
{
 if(wall != null) // only if it's painted already...
 {
 wall.changeColor("red");
 window.changeColor("black");
 roof.changeColor("green");
 sun.changeColor("yellow");
 }
}

As before, the wall object reference is checked to ensure that it is not null. As long as it is not
null, then the actions are performed - the same object reference and method invokation as
before but this time the parameters that are passed are "red", "black", "green" and
"yellow".

Finally, we have a single closing parentheses } to denote the end of the Picture class
definition.

}

Ex 1.14
Adding A
Second Sun

Exercise 1.14 reads as follows:

"Add a second sun to the picture."

To do this, pay attention to the attributes close to the top of the class. As
has been discussed, the attributes of the Picture class create four object
references - wall and window, object references to objects of type
Square; roof, an object reference to an object of type Triangle; and sun,
an object reference to an object of type Circle.

 private Square wall;
private Square window;
private Triangle roof;
private Circle sun;

 To add another sun to the Picture requires that we create a further object
reference to an object of type Circle.

 You need to add a line of code to create
an object reference for the second sun.
For example:

private Circle sun2;

This is illustrated on the right.

Then write the appropriate code for
creating the second sun.

 The easiest thing to do would be
to find the code that is used in the
creation of the first sun.

Select the code, as illustrated on
the right...

 Copy the code…

Paste the code beneath the code that
you have just copied.

You will need to change a few things.

Changes Firstly, you will need to amend all of the
sun references to sun2 as this is the
reference name that you are using to
refer to your second sun object.

Note that this is the easiest mistake to
make - People generally forget that the
methods invoked must be invoked for
the correct object - sun2 - not sun, the
original object.

 You will then need to make appropriate changes to the method calls.

 The changes I made are shown below. These are merely suggested
changes. You can select your own parameters if you want.

 sun2 = new Circle();
sun2.changeColor("blue");
sun2.moveHorizontal(100);
sun2.moveVertical(-20);
sun2.changeSize(45);
sun2.makeVisible();

 Remember to Compile the class
now that you have amended it.

Create a new instance of a Picture
object and then call its draw
method.

Your picture should appear similar
to the one on the right. Note that
you will now have two separate
suns.

Ex 1.15 Challenge Exercise 1.15 reads as follows:

Add a sunset to the single-sun version of Picture.

That is: make the sun go down slowly.

Remember: The circle has a method slowMoveVertical that you can use
to do this.

Solution: My suggested solution for this exercise is as follows:

 The code below illustrates how the sunset could be achieved.

The line: sun.slowMoveVertical(250);

has been added at the bottom of the Picture class's draw method.

 sun = new Circle();
sun.changeColor("yellow");
sun.moveHorizontal(180);
sun.moveVertical(-10);
sun.changeSize(60);
sun.makeVisible();
sun.slowMoveVertical(250);

 Invoking the Circle's slowMoverVertical method with a parameter of 250
(suggested value only) ensures that the object descends right off the
bottom of the canvas, thereby recreating a sunset effect.

Ex 1.16 Challenge Exercise 1.16 reads as follows:

Challenge Exercise: If you added your sunset to the end of the draw
method (so that the sun goes down automatically when the picture is
drawn), change this now. We want the sunset in a separate method, so
that we can call draw and see the picture with the sun up, and then call
sunset (a separate method) to make the sun go down.

 The required change is easy enough to make.

We can remove the line

sun.slowMoveVertical(250);

from the draw method and, instead, construct a sunset method that
contains the line. The effect of this will be to give the user control over the
sunset.

This is illustrated below:

 /**
 * sunset method
 * Method to recreate the setting of the sun
 */
public void sunset()
{
 sun.slowMoveVertical(250);
}

 Compile the class and then create a new instance of a Picture object. Call
the draw method for the object. The picture should be drawn as before but
without the automatic sunset.

 Right-click on your Picture object. Your additional method should now
appear as an available method / behaviour for you to select:

 You should now see your circle
move horizontally down the canvas.

Voila, a sunset!

Project Lab Classes

Project Lab
Classes

Open the lab-class project. The initial environment appears as shown
below: Note that this again indicates a use/dependency relationship
between the classes: LabClass - Student.

Ex 1.17 When you create an object of class Student you will see that you are
prompted not only for a name of the instance, but also for parameters
relating to the name and an id for the student object.

Fill them in before clicking OK.

Remember that parameters of type String must be written in double
quotes i.e. "Jonathan J Mackintosh", "00000001"

Ex 1.18 Create some Student objects. Call the getName method on each object.

Expain what is happening.

Solution When you create instances of
Student objects you are creating
individual objects using the
Student class definition.

Each time you create a Student
object you will be prompted for
values for the fullName and
studentID attributes.

The values provided will be
specific to the individual
students and will, thus, result in
the creation of Student objects with
different state.

 When you invoke the getName method on each of the Student objects
you are requesting the current value of the fullName attribute for that
particular instance of a Student object and, you would, therefore,
expect the name that is returned to be different for each Student.

 This is demonstrated on the right.

If I had created two Student
objects, had provided the values
"Jonathan J Mackintosh" and
"Jim Hunter" and had then
invoked the getName method for
each of these objects, then I would
expect to see the dialog boxes
shown to the right:

Ex 1.19 Create an object of class LabClass. As the signature indicates, you need

to specify the maximum number of students in that class (an integer).

 Insert, for example, 5 as the size for the new LabClass.

 Click Ok

Note Note that you could call the LabClass CS5036 for example.

You could then also create other instances of LabClass with names
that reflect your other course codes.

This may help you to understand how we can create many instances
from one class definition if you are finding the concept at all sticky.

Ex 1.20 Call the numberOfStudents method of that class. What does it do?

 The numberOfStudents method
will return a value that indicates
how many Students have been
enrolled on that class.

As you would expect, until you have
explicitly enrolled some students on
to the LabClass, then the result is
0, representing the fact that we
currently have no students.

 This is demonstrated to the right:

Ex 1.21 Look at the signature of the
enrollStudent method (below).

You will notice that the type of the
expected parameter is Student.

Make sure that you have two or
three students and a LabClass
object on the object bench, and
then call the enrollStudent method
of the LabClass object.

enrollStudent public void enrolStudent(Student newStudent)

 With the input cursor in the dialog entry field, click on one of the student

objects - this enters the name of the student object into the parameter field
of the enrollStudent method (Figure 1.8). Click OK, and you will have
added the student to the LabClass.

Add one or more other students as well.

 Note that, if you were to call the numberOfStudents method for the lab

class now it would return a different result, as shown below:

Ex 1.23 Create three students with the following details:

 Name Student ID Credits
 Snow White 100234 24
 Lisa Simpson 122044 56
 Charlie Brown 12003P 6

 The object bench should appear as follows:

 Then enter all three into a lab and

print a list to the screen.

Invoke the printList method.

You should have something similar
to what is shown below:

Note: Clearing
the Terminal
Window

Note that you will likely wish to clear the Terminal Window once you
have checked that the window displays what you expected.

If you do not clear the window, the displays will run after each other
which may cause some confusion i.e. you will end up with results that may
no longer be applicable.

Simply closing the terminal window will not clear the contents of the
window. To clear it, you must explicitly select the Clear option from the
Options menu as shown below:

addCredits Note that 1.23 asks you to create
three students - Snow White, Lisa
Simpson & Charlie Brown - with
'the following details'…

The provided details include
credits i.e. Snow White has 24
credits, Lisa Simpson 56 etc. etc.

However, you are not specifically
instructed to allocate these
credits to the students.

 You can allocate the credits by right

clicking on the appropriate student
object and then selecting the
addCredits method.

Ex 1.24 Use the inspector on a LabClass object to discover what fields it has.

 Right click on the object that you
wish to inspect and then select the
Inspect option from the menu that
appears (shown right).

This results in the display shown
below. As you can see, Inspect
enables you to 'inspect' all of the
attributes of an object.

Ex 1.25 Set the instructor, room and time for a lab, and print the list to the
terminal window to check that these new details appear.

 Right-click on the lab class object.

You should see the required
methods setInstructor, setRoom
and setTime.

Add appropriate details as
prompted when you call each of the
methods i.e.

"Jonathan Mackintosh"
"Meston G16"
"09.00"

Then print the list to the terminal as
instructed.

Ex 1.26 In this chapter we have mentioned the data types int and String. Java has
more predefined data types. Find out what they are and what they are
used for. To do this, you can check Appendix B, or look it up in another
Java book or in an online Java manual. One such manual is at:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

Additional
[non-book]

Additional: Create one further student object so that there are 6 student
objects on the object bench (if you did not use 5 as the max size for the
lab class then add enough student objects so that you can attempt to
enroll too many students).

For example, we could create an additional student with the details
provided below:

 As can be seen from the illustration of the object bench shown below, we

now have too many - 6 - students for the capacity of our lab class - 5.

 If we attempt to add the sixth student to the lab class, we receive the

message shown below:

 Calling the numberOfStudents method for the lab class shows that there
are 5 students enrolled for the class. Thus, our attempt to enroll an
additional student has been well and truly rejected.

This complies with the sensible behaviour that we would expect.

Look Look at the code for both the Student class and the LabClass.

 As before, attempt to identify the code behind certain behaviours.

Note, however, that you may not be able to fully understand the code at
this stage. The point of this exercise is more to do with familiarity with
objects working together.

