
2

In this chapter, we take our first proper look at the source code of a class. We will discuss
the basic elements of class definitions: fields, constructors, and methods. Methods contain
statements, and initially we look at methods containing only simple arithmetic and printing
statements. Later, we introduce conditional statements that allow choices between different
actions to be made within methods.

We shall start by examining a new project in a fair amount of detail. This project represents
a naíve implementation of an automated ticket machine. As we start by introducing the
most basic features of classes, we shall quickly find that this implementation is deficient
in a number of ways. So we shall then proceed to describe a more sophisticated version of
the ticket machine that represents a significant improvement. Finally, in order to reinforce
the concepts introduced in this chapter, we take a look at the internals of the lab-classes
example encountered in Chapter 1.

	 2.1	 Ticket machines
Train stations often provide ticket machines that print a ticket when a customer inserts
the correct money for their fare. In this chapter, we shall define a class that models some-
thing like these ticket machines. As we shall be looking inside our first Java example
classes, we shall keep our simulation fairly simple to start with. That will give us the

Understanding Class
Definitions

Main concepts discussed in this chapter:

■■ fields

■■ constructors

■■ parameters

■■ methods (accessor, mutator)

■■ assignment and conditional statement

Java constructs discussed in this chapter:
field, constructor, comment, parameter, assignment (=), block, return statement,
void, compound assignment operators (+=, −=), if-statement

Chapter

M02_BARN7367_06_SE_C02.indd 21 3/4/16 6:44 PM

22 | Chapter 2 ■ Understanding Class Definitions

opportunity to ask some questions about how these models differ from the real-world
versions, and how we might change our classes to make the objects they create more like
the real thing.

Our ticket machines work by customers “inserting” money into them and then requesting
a ticket to be printed. Each machine keeps a running total of the amount of money it has
collected throughout its operation. In real life, it is often the case that a ticket machine
offers a selection of different types of ticket, from which customers choose the one they
want. Our simplified machines print tickets of only a single price. It turns out to be signifi-
cantly more complicated to program a class to be able to issue tickets of different values,
than it does to offer a single price. On the other hand, with object-oriented programming
it is very easy to create multiple instances of the class, each with its own price setting, to
fulfill a need for different types of tickets.

2.1.1	 Exploring the behavior of a naïve ticket machine
Open the naíve-ticket-machine project in BlueJ. This project contains only one class—
TicketMachine—which you will be able to explore in a similar way to the examples
we discussed in Chapter 1. When you create a TicketMachine instance, you will be
asked to supply a number that corresponds to the price of tickets that will be issued by that
particular machine. The price is taken to be a number of cents, so a positive whole number
such as 500 would be appropriate as a value to work with.

Concept
Object
creation: Some
objects cannot
be constructed
unless extra
information is
provided.

Exercise 2.1  Create a TicketMachine object on the object bench and take a look
at its methods. You should see the following: getBalance, getPrice, insert­
Money, and printTicket. Try out the getPrice method. You should see a return
value containing the price of the tickets that was set when this object was created.
Use the insertMoney method to simulate inserting an amount of money into the
machine. The machine stores as a balance the amount of money inserted. Use get­
Balance to check that the machine has kept an accurate record of the amount just
inserted. You can insert several separate amounts of money into the machine, just
like you might insert multiple coins or bills into a real machine. Try inserting the exact
amount required for a ticket, and use getBalance to ensure that the balance is
increased correctly. As this is a simple machine, a ticket will not be issued automati-
cally, so once you have inserted enough money, call the printTicket method. A
facsimile ticket should be printed in the BlueJ terminal window.

Exercise 2.2  What value is returned if you get the machine’s balance after it
has printed a ticket?

Exercise 2.3  Experiment with inserting different amounts of money before print-
ing tickets. Do you notice anything strange about the machine’s behavior? What
happens if you insert too much money into the machine—do you receive any
refund? What happens if you do not insert enough and then try to print a ticket?

M02_BARN7367_06_SE_C02.indd 22 3/4/16 6:44 PM

	 2.2 Examining a class definition | 23

	 2.2	 Examining a class definition
The exercises at the end of the previous section reveal that TicketMachine objects only
behave in the way we expect them to if we insert the exact amount of money to match the
price of a ticket. As we explore the internal details of the class in this section, we shall see
why this is so.

Take a look at the source code of the TicketMachine class by double-clicking its icon in
the class diagram within BlueJ. It should look something like Figure 2.1.

The complete text of the class is shown in Code 2.1. By looking at the text of the class defi-
nition piece by piece, we can flesh out some of the object-oriented concepts that discussed
in Chapter 1. This class definition contains many of the features of Java that we will see
over and over again, so it will pay greatly to study it carefully.

Exercise 2.4  Try to obtain a good understanding of a ticket machine’s behavior
by interacting with it on the object bench before we start looking, in the next sec-
tion, at how the TicketMachine class is implemented.

Exercise 2.5  Create another ticket machine for tickets of a different price;
remember that you have to supply this value when you create the machine object.
Buy a ticket from that machine. Does the printed ticket look any different from
those printed by the first machine?

Figure 2.1
The BlueJ editor
window

M02_BARN7367_06_SE_C02.indd 23 3/4/16 6:44 PM

24 | Chapter 2 ■ Understanding Class Definitions

Code 2.1
The TicketMachine
class

M02_BARN7367_06_SE_C02.indd 24 3/4/16 6:44 PM

	 2.3 The class header | 25

Code 2.1
continued
The
TicketMachine
class

	 2.3	 The class header
The text of a class can be broken down into two main parts: a small outer wrapping that
simply names the class (appearing on a green background), and a much larger inner part
that does all the work. In this case, the outer wrapping appears as follows:

public class TicketMachine
{

Inner part of the class omitted.
}

The outer wrappings of different classes all look much the same. The outer wrapping
contains the class header, whose main purpose is to provide a name for the class. By a
widely followed convention, we always start class names with an uppercase letter. As long
as it is used consistently, this convention allows class names to be easily distinguished
from other sorts of names, such as variable names and method names, which will be
described shortly. Above the class header is a comment (shown as blue text) that tells us
something about the class.

M02_BARN7367_06_SE_C02.indd 25 3/4/16 6:44 PM

26 | Chapter 2 ■ Understanding Class Definitions

Exercise 2.6  Write out what you think the outer wrappers of the Student
and LabClass classes might look like; do not worry about the inner part.

Exercise 2.7  Does it matter whether we write

public class TicketMachine

or

class public TicketMachine

in the outer wrapper of a class? Edit the source of the TicketMachine class to
make the change, and then close the editor window. Do you notice a change in
the class diagram?

What error message do you get when you now press the Compile button? Do
you think this message clearly explains what is wrong?

Change the class back to how it was, and make sure that this clears the error
when you compile it.

Exercise 2.8  Check whether or not it is possible to leave out the word public
from the outer wrapper of the TicketMachine class.

Exercise 2.9  Put back the word public, and then check whether it is possible
to leave out the word class by trying to compile again. Make sure that both
words are put back as they were originally before continuing.

2.3.1	 Keywords
The words “public” and “class” are part of the Java language, whereas the word “Ticket
Machine” is not—the person writing the class has chosen that particular name. We call
words like “public” and “class” keywords or reserved words – the terms are used frequently
and interchangeably. There are around 50 of these in Java, and you will soon be able to
recognize most of them. A point worth remembering is that Java keywords never contain
uppercase letters, whereas the words we get to choose (like “TicketMachine”) are often a
mix of upper- and lowercase letters.

	 2.4	 Fields, constructors, and methods
The inner part of the class is where we define the fields, constructors, and methods that
give the objects of that class their own particular characteristics and behavior. We can sum-
marize the essential features of those three components of a class as follows:

■■ The fields store data persistently within an object.

■■ The constructors are responsible for ensuring that an object is set up properly when it
is first created.

■■ The methods implement the behavior of an object; they provide its functionality.

M02_BARN7367_06_SE_C02.indd 26 3/4/16 6:44 PM

	 2.4 Fields, constructors, and methods | 27

2.4.1	 Fields
Fields store data persistently within an object. The TicketMachine class has three fields:
price, balance, and total. Fields are also known as instance variables, because the
word variable is used as a general term for things that store data in a program. We have
defined the fields right at the start of the class definition (Code 2.3). All of these variables
are associated with monetary items that a ticket-machine object has to deal with:

■■ price stores the fixed price of a ticket;

■■ balance stores the amount of money inserted into the machine by a user prior to ask-
ing for a ticket to be printed;

■■ total stores the total amount of money inserted into the machine by all users since the
machine object was constructed (excluding any current balance). The idea is that, when
a ticket is printed, any money in the balance is transferred to the total.

In BlueJ, fields are shown as text on a white background, while constructors and methods
are displayed as yellow boxes.

In Java, there are very few rules about the order in which you choose to define the fields,
constructors, and methods within a class. In the TicketMachine class, we have chosen to
list the fields first, the constructors second, and finally the methods (Code 2.2). This is the
order that we shall follow in all of our examples. Other authors choose to adopt different
styles, and this is mostly a question of preference. Our style is not necessarily better than
all others. However, it is important to choose one style and then use it consistently, because
then your classes will be easier to read and understand.

Code 2.2
Our ordering
of fields,
constructors,
and methods

Concept
Fields store
data for an
object to use.
Fields are
also known
as instance
variables.

Exercise 2.10  From your earlier experimentation with the ticket machine objects
within BlueJ, you can probably remember the names of some of the methods—
printTicket, for instance. Look at the class definition in Code 2.1 and use this
knowledge, along with the additional information about ordering we have given
you, to make a list of the names of the fields, constructors, and methods in the
TicketMachine class. Hint: There is only one constructor in the class.

Exercise 2.11  What are the two features of the constructor that make it look
significantly different from the methods of the class?

M02_BARN7367_06_SE_C02.indd 27 3/4/16 6:44 PM

28 | Chapter 2 ■ Understanding Class Definitions

Each field has its own declaration in the source code. On the line above each in the full
class definition, we have added a single line of text—a comment—for the benefit of human
readers of the class definition:

// The price of a ticket from this machine.
private int price;

A single-line comment is introduced by the two characters “//”, which are written with no
spaces between them. More-detailed comments, often spanning several lines, are usually
written in the form of multiline comments. These start with the character pair “/*” and
end with the pair “*/”. There is a good example preceding the header of the class in
Code 2.1.

The definitions of the three fields are quite similar:

■■ All definitions indicate that they are private fields of the object; we shall have more to
say about what this means in Chapter 6, but for the time being we will simply say that
we always define fields to be private.

Concept
Comments
are inserted
into the source
code of a class
to provide
explanations to
human readers.
They have no
effect on the
functionality of
the class.

Code 2.3
The fields of the
TicketMachine
class

Fields are small amounts of space inside an object that can be used to store data persis-
tently. Every object will have space for each field declared in its class. Figure 2.2 shows
a diagrammatic representation of a ticket-machine object with its three fields. The fields
have not yet been assigned any values; once they have, we can write each value into the
box representing the field. The notation is similar to that used in BlueJ to show objects on
the object bench, except that we show a bit more detail here. In BlueJ, for space reasons,
the fields are not displayed on the object icon. We can, however, see them by opening an
inspector window (Section 1.7).

Figure 2.2
An object of class
TicketMachine

ticketMa1:
TicketMachine

price

balance

total

M02_BARN7367_06_SE_C02.indd 28 3/4/16 6:44 PM

	 2.4 Fields, constructors, and methods | 29

■■ All three fields are of type int. int is another keyword and represents the data type
integer. This indicates that each can store a single whole-number value, which is reason-
able given that we wish them to store numbers that represent amounts of money in cents.

Fields can store values that can vary over time, so they are also known as variables. The
value stored in a field can be changed from its initial value if required. For instance, as
more money is inserted into a ticket machine, we shall want to change the value stored
in the balance field. It is common to have fields whose values change often, such as
balance and total, and others that change rarely or not at all, such as price. The fact
that the value of price doesn’t vary once set does not alter the fact that it is still called a
variable. In the following sections, we shall also meet other kinds of variables in addition
to fields, but they will all share the same fundamental purpose of storing data.

The price, balance, and total fields are all the data items that a ticket-machine object
needs to fulfill its role of receiving money from a customer, printing tickets, and keeping a
running total of all the money that has been put into it. In the following sections, we shall
see how the constructor and methods use those fields to implement the behavior of naíve
ticket machines.

Exercise 2.12  What do you think is the type of each of the following fields?

private int count;

private Student representative;

private Server host;

Exercise 2.13  What are the names of the following fields?

private boolean alive;

private Person tutor;

private Game game;

Exercise 2.14  From what you know about the naming conventions for classes,
which of the type names in Exercises 2.12 and 2.13 would you say are class
names?

Exercise 2.15  In the following field declaration from the TicketMachine class

private int price;

does it matter which order the three words appear in? Edit the TicketMachine
class to try different orderings. After each change, close the editor. Does the
appearance of the class diagram after each change give you a clue as to whether
or not other orderings are possible? Check by pressing the Compile button to
see if there is an error message.

Make sure that you reinstate the original version after your experiments!

M02_BARN7367_06_SE_C02.indd 29 3/4/16 6:44 PM

30 | Chapter 2 ■ Understanding Class Definitions

From the definitions of fields we have seen so far, we can begin to put a pattern together
that will apply whenever we define a field variable in a class:

■■ They usually start with the reserved word private.

■■ They include a type name (such as int, String, Person, etc.)

■■ They include a user-chosen name for the field variable.

■■ They end with a semicolon.

Remembering this pattern will help you when you write your own classes.

Indeed, as we look closely at the source code of different classes, you will see patterns
such as this one emerging over and over again. Part of the process of learning to program
involves looking out for such patterns and then using them in your own programs. That is
one reason why studying source code in detail is so useful at this stage.

2.4.2	 Constructors
Constructors have a special role to fulfill. They are responsible for ensuring that an object
is set up properly when it is first created; in other words, for ensuring that an object is
ready to be used immediately following its creation. This construction process is also
called initialization.

In some respects, a constructor can be likened to a midwife: it is responsible for ensur-
ing that the new object comes into existence properly. Once an object has been created,
the constructor plays no further role in that object’s life and cannot be called again.
Code 2.4 shows the constructor of the TicketMachine class.

One of the distinguishing features of constructors is that they have the same name as the
class in which they are defined—TicketMachine in this case. The constructor’s name
immediately follows the word public, with nothing in between.1

We should expect a close connection between what happens in the body of a constructor
and the fields of the class. This is because one of the main roles of the constructor is to
initialize the fields. It will be possible with some fields, such as balance and total, to
set sensible initial values by assigning a constant number—zero in this case. With others,
such as the ticket price, it is not that simple, as we do not know the price that tickets from

1	 While this description is a slight simplification of the full Java rule, it fits the general rule we will
use in the majority of code in this book.

Exercise 2.16  Is it always necessary to have a semicolon at the end of a field
declaration? Once again, experiment via the editor. The rule you will learn here is
an important one, so be sure to remember it.

Exercise 2.17  Write in full the declaration for a field of type int whose name
is status.

Concept
Constructors
allow each
object to be
set up properly
when it is first
created.

M02_BARN7367_06_SE_C02.indd 30 3/4/16 6:44 PM

	 2.4 Fields, constructors, and methods | 31

a particular machine will have until that machine is constructed. Recall that we might
wish to create multiple machine objects to sell tickets with different prices, so no one ini-
tial price will always be right. You will know from experimenting with creating Ticket­
Machine objects within BlueJ that you had to supply the cost of the tickets whenever you
created a new ticket machine. An important point to note here is that the price of a ticket is
initially determined externally and then has to be passed into the constructor. Within BlueJ,
you decide the value and enter it into a dialog box. Part of the task of the constructor is to
receive that value and store it in the price field of the newly created ticket machine, so
the machine can remember what that value was without you having to keep reminding it.

Note  In Java, all fields are automatically initialized to a default value if they are not explicitly
initialized. For integer fields, this default value is zero. So, strictly speaking, we could have
done without setting balance and total to zero, relying on the default value to give us the
same result. However, we prefer to write the explicit assignments anyway. There is no disad-
vantage to it, and it serves well to document what is actually happening. We do not rely on a
reader of the class knowing what the default value is, and we document that we really want
this value to be zero and have not just forgotten to initialize it.

Code 2.4
The constructor of
the Ticket
Machine class

We can see from this that one of the most important roles of a field is to remember external
information passed into the object, so that that information is available to an object through-
out its lifetime. Fields, therefore, provide a place to store long-lasting (i.e., persistent) data.

Figure 2.3 shows a ticket-machine object after the constructor has executed. Values have
now been assigned to the fields. From this diagram, we can tell that the ticket machine was
created by passing in 500 as the value for the ticket price.

In the next section, we discuss how values are received by an object from outside.

M02_BARN7367_06_SE_C02.indd 31 3/4/16 6:44 PM

32 | Chapter 2 ■ Understanding Class Definitions

	 2.5	 Parameters: receiving data
Constructors and methods play quite different roles in the life of an object, but the way in
which both receive values from outside is the same: via parameters. You may recall that we
briefly encountered parameters in Chapter 1 (Section 1.4). Parameters are another sort of
variable, just as fields are, so they are also used to hold data. Parameters are variables that
are defined in the header of a constructor or method:

public TicketMachine(int cost)

This constructor has a single parameter, cost, which is of type int—the same type as the
price field it will be used to set. A parameter is used as a sort of temporary messenger,
carrying data originating from outside the constructor or method, and making it available
inside it.

Figure 2.4 illustrates how values are passed via parameters. In this case, a BlueJ user enters
the external value into the dialog box when creating a new ticket machine (shown on the
left), and that value is then copied into the cost parameter of the new machine’s construc-
tor. This is illustrated with the arrow labeled (A). The box in the TicketMachine object
in Figure 2.4, labeled “TicketMachine (constructor),” represents additional space for the
object that is created only when the constructor executes. We shall call it the constructor
space of the object (or method space when we talk about methods instead of constructors,
as the situation there is the same). The constructor space is used to provide space to store
the values for the constructor’s parameters. In our diagrams, all variables are represented
by white boxes.

We distinguish between the parameter names inside a constructor or method, and the
parameter values outside, by referring to the names as formal parameters and the values as
actual parameters. So cost is a formal parameter, and a user-supplied value such as 500
is an actual parameter.

A formal parameter is available to an object only within the body of a constructor or
method that declares it. We say that the scope of a parameter is restricted to the body of the
constructor or method in which it is declared. In contrast, the scope of a field is the whole
of the class definition–it can be accessed from anywhere in the same class. This is a very
important difference between these two sorts of variables.

Figure 2.3
A TicketMachine
object after initializa-
tion (created for 500-
cent tickets)

0

500

ticketMa1:
TicketMachine

price

balance

total 0

Concept
The scope of a
variable defines
the section of
source code
from which the
variable can be
accessed.

M02_BARN7367_06_SE_C02.indd 32 3/4/16 6:44 PM

2.5 Parameters: receiving data | 33

A concept related to variable scope is variable lifetime. The lifetime of a parameter is
limited to a single call of a constructor or method. When a constructor or method is called,
the extra space for the parameter variables is created, and the external values copied into
that space. Once that call has completed its task, the formal parameters disappear and the
values they held are lost. In other words, when the constructor has finished executing,
the whole constructor space is removed, along with the parameter variables held within it
(see Figure 2.4).

In contrast, the lifetime of a field is the same as the lifetime of the object to which it
belongs. When an object is created, so are the fields, and they persist for the lifetime of the
object. It follows that if we want to remember the cost of tickets held in the cost param-
eter, we must store the value somewhere persistent—that is, in the price field.

Just as we expect to see a close link between a constructor and the fields of its class, we
expect to see a close link between the constructor’s parameters and the fields, because
external values will often be needed to set the initial values of one or more of those fields.
Where this is the case, the parameter types will closely match the types of the correspond-
ing fields.

Concept
The lifetime
of a variable
describes how
long the vari-
able continues
to exist before
it is destroyed.

Figure 2.4
Parameter passing (A)
and assignment (B)

0

500

ticketMa1:
TicketMachine

price

balance

total 0

TicketMachine
(constructor)

500cost

(A)

(B)

Exercise 2.18  To what class does the following constructor belong?

public Student(String name)

Exercise 2.19  How many parameters does the following constructor have,
and what are their types?

public Book(String title, double price)

Exercise 2.20  Can you guess what types some of the Book class’s fields might
be, from the parameters in its constructor? Can you assume anything about the
names of its fields?

M02_BARN7367_06_SE_C02.indd 33 3/4/16 6:44 PM

34 | Chapter 2 ■ Understanding Class Definitions

2.5.1	 Choosing variable names
One of the things you might have noticed is that the variable names we use for fields
and parameters have a close connection with the purpose of the variable. Names such as
price, cost, title, and alive all tell you something useful about the information being
stored in that variable. This, makes it easier to understand what is going on in the program.
Given that we have a large degree of freedom in our choice of variable names, it is worth
following this principle of choosing names that communicate a sense of purpose rather
than arbitrary and meaningless combinations of letters and numbers.

	 2.6	 Assignment
In the previous section, we noted the need to copy the short-lived value stored in a
parameter variable into somewhere more permanent—a field variable. In order to do this,
the body of the constructor contains the following assignment statement:

price = cost;

Assignment statements are used frequently in programming, as a means to store a value into
a variable. They can be recognized by the presence of an assignment operator, such as “=”
in the example above. Assignment statements work by taking the value of what appears on
the right-hand side of the operator and copying that value into the variable on the left-hand
side. This is illustrated in Figure 2.4 by the arrow labeled (B). The right-hand side is called an
expression. In their most general form, expressions are things that compute values, but in this
case, the expression consists of just a single variable, whose value is copied into the price
variable. We shall see examples of more-complicated expressions later in this chapter.

One rule about assignment statements is that the type of the expression on the right-hand
side must match the type of the variable to which its value is assigned. We have already met
three different, commonly used types: int, String, and (very briefly) boolean. This rule
means that we are not allowed to store an int-type expression in a String-type variable,
for instance. This same rule also applies between formal parameters and actual parameters:
the type of an actual-parameter expression must match the type of the formal-parameter
variable. For now, we can say that the types of both must be the same, although we shall see
in later chapters that this is not the whole truth.

Concept
Assignment
statements
store the value
represented
by the right-
hand side of
the statement
in the variable
named on the
left.

Exercise 2.21  Suppose that the class Pet has a field called name that is of the type
String. Write an assignment statement in the body of the following constructor so
that the name field will be initialized with the value of the constructor’s parameter.

public Pet(String petsName)
{
}

Exercise 2.22  Challenge exercise The following object creation will result in the
constructor of the Date class being called. Can you write the constructor’s header?

new Date("March", 23, 1861)

Try to give meaningful names to the parameters.

M02_BARN7367_06_SE_C02.indd 34 3/4/16 6:44 PM

	 2.7 Methods | 35

	 2.7	 Methods
The TicketMachine class has four methods: getPrice, getBalance, insertMoney,
and printTicket. You can see them in the class’s source code (Code 2.1) as yellow
boxes. We shall start our look at the source code of methods by considering getPrice
(Code 2.5).

Code 2.5
The getPrice
method

Methods have two parts: a header and a body. Here is the method header for getPrice,
preceded by a descriptive comment:

/**
* Return the price of a ticket.
*/

public int getPrice()

It is important to distinguish between method headers and field declarations, because they
can look quite similar. We can tell that getPrice is a method and not a field because
method headers always include a pair of parentheses–“(” and “)”–and no semicolon at the
end of the header.

The method body is the remainder of the method after the header. It is always enclosed by
a matching pair of curly brackets: “{“ and “}”. Method bodies contain the declarations and
statements that define what an object does when that method is called. Declarations are
used to create additional, temporary variable space, while statements describe the actions
of the method. In getPrice, the method body contains a single statement, but we shall
soon see examples where the method body consists of many lines of both declarations and
statements.

Any set of declarations and statements between a pair of matching curly brackets is known
as a block. So the body of the TicketMachine class, the bodies of the constructor, and all
of the methods within the class are blocks.

Concept
Methods
consist of two
parts: a header
and a body.

M02_BARN7367_06_SE_C02.indd 35 3/4/16 6:44 PM

36 | Chapter 2 ■ Understanding Class Definitions

There are at least two significant differences between the headers of the TicketMachine
constructor and the getPrice method:

public TicketMachine(int cost)

public int getPrice()

■■ The method has a return type of int; the constructor has no return type. A return type is
written just before the method name. This is a difference that applies in all cases.

■■ The constructor has a single formal parameter, cost, but the method has none—just a
pair of empty parentheses. This is a difference that applies in this particular case.

It is an absolute rule in Java that a constructor may not have a return type. On the other hand,
both constructors and methods may have any number of formal parameters, including none.

Within the body of getPrice there is a single statement:

return price;

This is called a return statement. It is responsible for returning an integer value to match
the int return type in the method’s header. Where a method contains a return statement, it
is always the final statement of that method, because no further statements in the method
will be executed once the return statement is executed.

Return types and return statements work together. The int return type of getPrice is a
form of promise that the body of the method will do something that ultimately results in
an integer value being calculated and returned as the method’s result. You might like to
think of a method call as being a form of question to an object, and the return value from
the method being the object’s answer to that question. In this case, when the getPrice
method is called on a ticket machine, the question is, What do tickets cost? A ticket
machine does not need to perform any calculations to be able to answer that, because it
keeps the answer in its price field. So the method answers by just returning the value
of that variable. As we gradually develop more-complex classes, we shall inevitably
encounter more-complex questions that require more work to supply their answers.

	 2.8	 Accessor and mutator methods
We often describe methods such as the two “get” methods of TicketMachine (getPrice and
getBalance) as accessor methods (or just accessors). This is because they return information
to the caller about the state of an object; they provide access to information about the object’s
state. An accessor usually contains a return statement in order to pass back that information.

There is often confusion about what “returning a value” actually means in practice. People
often think it means that something is printed by the program. This is not the case at all— we
shall see how printing is done when we look at the printTicket method. Rather, returning
a value means that some information is passed internally between two different parts of the
program. One part of the program has requested information from an object via a method call,
and the return value is the way the object has of passing that information back to the caller.

The get methods of a ticket machine perform similar tasks: returning the value of one of
their object’s fields. The remaining methods—insertMoney and printTicket—have a

Concept
Accessor
methods
return infor-
mation about
the state of an
object.

M02_BARN7367_06_SE_C02.indd 36 3/4/16 6:44 PM

2.8 Accessor and mutator methods | 37

Exercise 2.23  Compare the header and body of the getBalance method
with the header and body of the getPrice method. What are the differences
between them?

Exercise 2.24  If a call to getPrice can be characterized as “What do tickets
cost?” how would you characterize a call to getBalance?

Exercise 2.25  If the name of getBalance is changed to getAmount, does the
return statement in the body of the method also need to be changed for the
code to compile? Try it out within BlueJ. What does this tell you about the name
of an accessor method and the name of the field associated with it?

Exercise 2.26  Write an accessor method getTotal in the TicketMachine
class. The new method should return the value of the total field.

Exercise 2.27  Try removing the return statement from the body of getPrice.
What error message do you see now when you try compiling the class?

Exercise 2.28  Compare the method headers of getPrice and printTicket
in Code 2.1. Apart from their names, what is the main difference between them?

Exercise 2.29  Do the insertMoney and printTicket methods have return
statements? Why do you think this might be? Do you notice anything about
their headers that might suggest why they do not require return statements?

Concept
Mutator
methods
change the
state of an
object.

much more significant role, primarily because they change the value of one or more fields
of a ticket-machine object each time they are called. We call methods that change the state
of their object mutator methods (or just mutators).

In the same way as we think of a call to an accessor as a request for information (a ques-
tion), we can think of a call to a mutator as a request for an object to change its state. The
most basic form of mutator is one that takes a single parameter whose value is used to
directly overwrite what is stored in one of an object’s fields. In a direct complement to
“get” methods, these are often called “set” methods, although the TicketMachine does
not have any of those, at this stage.

One distinguishing effect of a mutator is that an object will often exhibit slightly different
behavior before and after it is called. We can illustrate this with the following exercise.

Exercise 2.30  Create a ticket machine with a ticket price of your choosing.
Before doing anything else, call the getBalance method on it. Now call the
insertMoney method (Code 2.6) and give a non-zero positive amount of
money as the actual parameter. Now call getBalance again. The two calls to
getBalance should show different outputs, because the call to insertMoney
had the effect of changing the machine’s state via its balance field.

M02_BARN7367_06_SE_C02.indd 37 3/4/16 6:44 PM

38 | Chapter 2 ■ Understanding Class Definitions

In the body of insertMoney, there is a single statement that is another form of assign-
ment statement. We always consider assignment statements by first examining the calcula-
tion on the right-hand side of the assignment symbol. Here, its effect is to calculate a value
that is the sum of the number in the amount parameter and the number in the balance
field. This combined value is then assigned to the balance field. So the effect is to
increase the value in balance by the value in amount.3

3	 Adding an amount to the value in a variable is so common that there is a special compound assign-
ment operator to do this: +=. For instance:
	 balance += amount;

Code 2.6
The insert­
Money method

The header of insertMoney has a void return type and a single formal parameter,
amount, of type int. A void return type means that the method does not return any value
to its caller. This is significantly different from all other return types. Within BlueJ, the
difference is most noticeable in that no return-value dialog is shown following a call to a
void method. Within the body of a void method, this difference is reflected in the fact
that there is no return statement.2

2	 In fact, Java does allow void methods to contain a special form of return statement in which there
is no return value. This takes the form
	 return;

	 and simply causes the method to exit without executing any further code.

Exercise 2.31  How can we tell from just its header that setPrice is a method
and not a constructor?

public void setPrice(int cost)

Exercise 2.32  Complete the body of the setPrice method so that it assigns
the value of its parameter to the price field.

Exercise 2.33  Complete the body of the following method, whose purpose is
to add the value of its parameter to a field named score.

/**
* Increase score by the given number of points.
*/

public void increase(int points)
{
...

}

M02_BARN7367_06_SE_C02.indd 38 3/4/16 6:44 PM

	 2.9 Printing from methods | 39

Exercise 2.34  Is the increase method a mutator? If so, how could you
demonstrate this?

Exercise 2.35  Complete the following method, whose purpose is to subtract
the value of its parameter from a field named price.

/**
* Reduce price by the given amount.
*/

public void discount(int amount)
{
...

}

	 2.9	 Printing from methods
Code 2.7 shows the most complex method of the class: printTicket. To help your under-
standing of the following discussion, make sure that you have called this method on a
ticket machine. You should have seen something like the following printed in the BlueJ
terminal window:

##################

The BlueJ Line

Ticket

500 cents.

##################

This is the longest method we have seen so far, so we shall break it down into more
manageable pieces:

■■ The header indicates that the method has a void return type, and that it takes no
parameters.

■■ The body comprises eight statements plus associated comments.

■■ The first six statements are responsible for printing what you see in the BlueJ terminal
window: five lines of text and a sixth blank line.

■■ The seventh statement adds the balance inserted by the customer (through previous
calls to insertMoney) to the running total of all money collected so far by the
machine.

■■ The eighth statement resets the balance to zero with a basic assignment statement, in
preparation for the next customer.

M02_BARN7367_06_SE_C02.indd 39 3/4/16 6:44 PM

40 | Chapter 2 ■ Understanding Class Definitions

Code 2.7
The print­

Ticket method

By comparing the output that appears with the statements that produced it, it is easy to see
that a statement such as

System.out.println("# The BlueJ Line");

literally prints the string that appears between the matching pair of double-quote charac-
ters. The basic form of a call to println is

System.out.println(something-we-want-to-print);

where something-we-want-to-print can be replaced by any arbitrary string, enclosed
between a pair of double-quote characters. For instance, there is nothing significant in the
“#” character that is in the string—it is simply one of the characters we wish to be printed.

All of the printing statements in the printTicket method are calls to the println
method of the System.out object that is built into the Java language, and what appears
between the round brackets is the parameter to each method call, as you might expect.
However, in the fourth statement, the actual parameter to println is a little more compli-
cated and requires some more explanation:

System.out.println(" #  " + price + " cents.");

What it does is print out the price of the ticket, with some extra characters on either side of
the amount. The two “+” operators are being used to construct a single actual parameter, in
the form of a string, from three separate components:

■■ the string literal: " #  " (note the space character after the hash);

■■ the value of the price field (note that there are no quotes around the field name because
we want the field’s value, not its name);

■■ the string literal: " cents." (note the space character before the word "cents").

Concept
The method
System.out.
println prints
its param-
eter to the text
terminal.

M02_BARN7367_06_SE_C02.indd 40 3/4/16 6:44 PM

	 2.9 Printing from methods | 41

When used between a string and anything else, “+” is a string-concatenation operator (i.e.,
it concatenates or joins strings together to create a new string) rather than an arithmetic-
addition operator. So the numeric value of price is converted into a string and joined to its
two surrounding strings.

Note that the final call to println contains no string parameter. This is allowed, and the
result of calling it will be to leave a blank line between this output and any that follows
after. You will easily see the blank line if you print a second ticket.

Exercise 2.36  Write down exactly what will be printed by the following
statement:

System.out.println("My cat has green eyes.");

Exercise 2.38  What do you think would be printed if you altered the fourth
statement of printTicket so that price also has quotes around it, as
follows?

System.out.println("# " + "price" + " cents.");

Exercise 2.39  What about the following version?

System.out.println("# price cents.");

Exercise 2.40  Could either of the previous two versions be used to show the
price of tickets in different ticket machines? Explain your answer.

Exercise 2.37  Add a method called prompt to the TicketMachine class.
This should have a void return type and take no parameters. The body of the
method should print the following single line of output:

Please insert the correct amount of money.

Exercise 2.41  Add a showPrice method to the TicketMachine class. This
should have a void return type and take no parameters. The body of the
method should print:

The price of a ticket is xyz cents.

where xyz should be replaced by the value held in the price field when the
method is called.

Exercise 2.42  Create two ticket machines with differently priced tickets. Do
calls to their showPrice methods show the same output, or different? How do
you explain this effect?

M02_BARN7367_06_SE_C02.indd 41 3/4/16 6:44 PM

42 | Chapter 2 ■ Understanding Class Definitions

	 2.10	 Method summary
It is worth summarizing a few features of methods at this point, because methods are fun-
damental to the programs we will be writing and exploring in this book. They implement
the core actions of every object.

A method with parameters will receive data passed to it from the method’s caller, and will
then use that data to help it perform a particular task. However, not all methods take param-
eters; many simply use the data stored in the object’s fields to carry out their task.

If a method has a non-void return type, it will return some data to the place it was called
from—and that data will almost certainly be used in the caller for further calculations
or program manipulations. Many methods, though, have a void return type and return
nothing, but they still perform a useful task within the context of their object.

Accessor methods have non-void return types and return information about the object’s
state. Mutator methods modify an object’s state. Mutators often take parameters whose
values are used in the modification, although it is still possible to write a mutating method
that does not take parameters.

	 2.11	 Summary of the naíve ticket machine
We have now examined the internal structure of the naíve TicketMachine class in some
detail. We have seen that the class has a small outer layer that gives a name to the class, and a
more substantial inner body containing fields, a constructor, and several methods. Fields are
used to store data that enable objects to maintain a state that persists between method calls.
Constructors are used to set up an initial state when an object is created. Having a proper initial
state will enable an object to respond appropriately to method calls immediately following its
creation. Methods implement the defined behavior of the class’s objects. Accessor methods
provide information about an object’s state, and mutator methods change an object’s state.

We have seen that constructors are distinguished from methods by having the same name
as the class in which they are defined. Both constructors and methods may take param-
eters, but only methods may have a return type. Non-void return types allow us to pass
a value out of a method to the place where the method was called from. A method with a
non-void return type must have at least one return statement in its body; this will often
be the final statement. Constructors never have a return type of any sort—not even void.

Before attempting these exercises, be sure that you have a good understanding
of how ticket machines behave and how that behavior is implemented through
the fields, constructor, and methods of the class.

Exercise 2.43  Modify the constructor of TicketMachine so that it no longer
has a parameter. Instead, the price of tickets should be fixed at 1,000 cents. What
effect does this have when you construct ticket-machine objects within BlueJ?

M02_BARN7367_06_SE_C02.indd 42 3/4/16 6:44 PM

	 2.12 Reflecting on the design of the ticket machine | 43

	 2.12	 Reflecting on the design of the ticket
machine
From our study of the internals of the TicketMachine class, you should have come to
appreciate how inadequate it would be in the real world. It is deficient in several ways:

■■ It contains no check that the customer has entered enough money to pay for a ticket.

■■ It does not refund any money if the customer pays too much for a ticket.

■■ It does not check to ensure that the customer inserts sensible amounts of money. Experi
ment with what happens if a negative amount is entered, for instance.

■■ It does not check that the ticket price passed to its constructor is sensible.

If we could remedy these problems, then we would have a much more functional piece of
software that might serve as the basis for operating a real-world ticket machine.

In the next few sections, we shall examine the implementation of an improved ticket
machine class that attempts to deal with some of the inadequacies of the naïve implementa-
tion. Open the better-ticket-machine project. As before, this project contains a single class:
TicketMachine. Before looking at the internal details of the class, experiment with it by
creating some instances and see whether you notice any differences in behavior between
this version and the previous naíve version.

One specific difference is that the new version has an additional method, refundBalance.
Take a look at what happens when you call it.

Exercise 2.44  Give the class two constructors. One should take a single
parameter that specifies the price, and the other should take no parameter and
set the price to be a default value of your choosing. Test your implementation by
creating machines via the two different constructors.

Exercise 2.45  Implement a method, empty, that simulates the effect of
removing all money from the machine. This method should have a void return
type, and its body should simply set the total field to zero. Does this method
need to take any parameters? Test your method by creating a machine, inserting
some money, printing some tickets, checking the total, and then emptying the
machine. Is the empty method a mutator or an accessor?

Code 2.8
A more
sophisticated
TicketMachine

M02_BARN7367_06_SE_C02.indd 43 3/4/16 6:44 PM

44 | Chapter 2 ■ Understanding Class Definitions

Code 2.8
continued
A more
sophisticated
TicketMachine

M02_BARN7367_06_SE_C02.indd 44 3/4/16 6:44 PM

	 2.13 Making choices: the conditional statement | 45

Code 2.8
continued
A more
sophisticated
TicketMachine

	 2.13	 Making choices: the conditional statement
Code 2.8 shows the internal details of the better ticket machine’s class definition. Much
of this definition will already be familiar to you from our discussion of the naíve ticket
machine. For instance, the outer wrapping that names the class is the same, because we
have chosen to give this class the same name. In addition, it contains the same three fields
to maintain object state, and these have been declared in the same way. The constructor and
the two get methods are also the same as before.

The first significant change can be seen in the insertMoney method. We recognized that the
main problem with the naíve ticket machine was its failure to check certain conditions. One of

M02_BARN7367_06_SE_C02.indd 45 3/4/16 6:44 PM

46 | Chapter 2 ■ Understanding Class Definitions

those missing checks was on the amount of money inserted by a customer, as it was possible
for a negative amount of money to be inserted. We have remedied that failing by making use of
a conditional statement to check that the amount inserted has a value greater than zero:

if(amount > 0) {
balance = balance + amount;

}
else {

System.out.println("Use a positive amount rather than: " +
amount);

}

Conditional statements are also known as if-statements, from the keyword used in most
programming languages to introduce them. A conditional statement allows us to take one
of two possible actions based upon the result of a check or test. If the test is true, then we
do one thing; otherwise, we do something different. This kind of either/or decision should
be familiar from situations in everyday life: for instance, if I have enough money left, then
I shall go out for a meal; otherwise, I shall stay home and watch a movie. A conditional
statement has the general form described in the following pseudo-code:

if(perform some test that gives a true or false result) {
Do the statements here if the test gave a true result

}
else {

Do the statements here if the test gave a false result
}

Certain parts of this pseudo-code are proper bits of Java, and those will appear in almost
all conditional statements–the keywords if and else, the round brackets around the test,
and the curly brackets marking the two blocks–while the other three italicized parts will be
fleshed out differently for each particular situation being coded.

Only one of the two blocks of statements following the test will ever be performed
following the evaluation of the test. So, in the example from the insertMoney method,
following the test of an inserted amount we shall only either add the amount to the
balance or print the error message. The test uses the greater-than operator, “>”, to com-
pare the value in amount against zero. If the value is greater than zero, then it is added
to the balance. If it is not greater than zero, then an error message is printed. By using
a conditional statement, we have, in effect, protected the change to balance in the case
where the parameter does not represent a valid amount. Details of other Java operators
can be found in Appendix C. The obvious ones to mention at this point are “<” (less-than),
“<=” (less-than or equal-to), and “>=” (greater-than or equal-to). All are used to compare
two numeric values, as in the printTicket method.

The test used in a conditional statement is an example of a boolean expression. Earlier
in this chapter, we introduced arithmetic expressions that produced numerical results.
A boolean expression has only two possible values (true or false): the value of amount
is either greater than zero (true) or it is not greater (false). A conditional statement
makes use of those two possible values to choose between two different actions.

Concept
A conditional
statement
takes one of
two possible
actions based
upon the result
of a test.

Concept
Boolean
expressions
have only two
possible values:
true and false.
They are com-
monly found
controlling the
choice between
the two paths
through a
conditional
statement.

M02_BARN7367_06_SE_C02.indd 46 3/4/16 6:44 PM

	 2.14 A further conditional-statement example | 47

Exercise 2.46  Check that the behavior we have discussed here is accurate
by creating a TicketMachine instance and calling insertMoney with various
actual parameter values. Check the balance both before and after calling
insertMoney. Does the balance ever change in the cases when an error
message is printed? Try to predict what will happen if you enter the value zero
as the parameter, and then see if you are right.

Exercise 2.47  Predict what you think will happen if you change the test in
insertMoney to use the greater-than or equal-to operator:

if(amount >= 0)

Check your predictions by running some tests. What is the one situation in
which it makes a difference to the behavior of the method?

Exercise 2.48  Rewrite the if-else statement so that the method still behaves
correctly but the error message is printed if the boolean expression is true but
the balance is increased if the expression is false. You will obviously have to
rewrite the condition to make things happen this way around.

Exercise 2.49  In the figures project we looked at in Chapter 1 we used
a boolean field to control a feature of the circle objects. What was that
feature? Was it well suited to being controlled by a type with only two
different values?

	 2.14	 A further conditional-statement example
The printTicket method contains a further example of a conditional statement. Here it
is in outline:

if(balance >= price) {
Printing details omitted.
// Update the total collected with the price.
total = total + price;
// Reduce the balance by the price.
balance = balance – price;

}
else {

System.out.println("You must insert at least: " +
(price – balance) + " more cents.");

}

With this if-statement, we fix the problem that the naíve version makes no check that a
customer has inserted enough money for a ticket before printing. This version checks that
the value in the balance field is at least as large as the value in the price field. If it is,
then it is okay to print a ticket. If it is not, then we print an error message instead.

M02_BARN7367_06_SE_C02.indd 47 3/4/16 6:44 PM

48 | Chapter 2 ■ Understanding Class Definitions

The printing of the error message follows exactly the same pattern as we saw for printing
the price of tickets in the printTicket method; it is just a little more verbose.

System.out.println("You must insert at least: " +
(price – balance) + " more cents.");

The single actual parameter to the println method consists of a concatenation of three
elements: two string literals on either side of a numeric value. In this case, the numeric
value is a subtraction that has been placed in parentheses to indicate that it is the resulting
value we wish to concatenate with the two strings.

Exercise 2.50  In this version of printTicket, we also do something slightly
different with the total and balance fields. Compare the implementation of the
method in Code 2.1 with that in Code 2.8 to see whether you can tell what those
differences are. Then check your understanding by experimenting within BlueJ.

Exercise 2.51  Is it possible to remove the else part of the if-statement in the
printTicket method (i.e., remove the word else and the block attached to
it)? Try doing this and seeing if the code still compiles. What happens now if you
try to print a ticket without inserting any money?

The printTicket method reduces the value of balance by the value of price. As a
consequence, if a customer inserts more money than the price of the ticket, then some
money will be left in the balance that could be used toward the price of a second ticket.
Alternatively, the customer could ask to be refunded the remaining balance, and that is
what the refundBalance method does, as we shall see in section 2.16.

	 2.15	 Scope highlighting
You will have noticed by now that the BlueJ editor displays source code with some addi-
tional decoration: colored boxes around some elements, such as methods and if-statements
(see, for example, Code 2.8).

These colored annotations are known as scope highlighting, and they help clarify logical
units of your program. A scope (also called a block) is a unit of code usually indicated by a
pair of curly brackets. The whole body of a class is a scope, as is the body of each method
and the if and else parts of an if-statement.

As you can see, scopes are often nested: the if-statement is inside a method, which is inside
a class. BlueJ helps by distinguishing different kinds of scopes with different colors.

One of the most common errors in the code of beginning programmers is getting the curly
brackets wrong—either by having them in the wrong place, or by having a bracket missing
altogether. Two things can greatly help in avoiding this kind of error:

■■ Pay attention to proper indentation of your code. Every time a new scope starts (after an
open curly bracket), indent the following code one level more. Closing the scope brings

M02_BARN7367_06_SE_C02.indd 48 3/4/16 6:44 PM

	 2.16 Local variables | 49

Exercise 2.52  After a ticket has been printed, could the value in the balance
field ever be set to a negative value by subtracting price from it? Justify your
answer.

Exercise 2.53  So far, we have introduced you to two arithmetic operators,
+ and −, that can be used in arithmetic expressions in Java. Take a look at
Appendix C to find out what other operators are available.

Exercise 2.54  Write an assignment statement that will store the result of
multiplying two variables, price and discount, into a third variable, saving.

Exercise 2.55  Write an assignment statement that will divide the value in
total by the value in count and store the result in mean.

Exercise 2.56  Write an if-statement that will compare the value in price
against the value in budget. If price is greater than budget, then print the
message “Too expensive”; otherwise print the message “Just right”.

Exercise 2.57  Modify your answer to the previous exercise so that the
message includes the value of your budget if the price is too high.

the indentation back. If your indentation is completely out, use BlueJ’s “Auto-layout”
function (find it in the editor menu!) to fix it.

■■ Pay attention to the scope highlighting. You will quickly get used to the way well-structured
code looks. Try removing a curly bracket in the editor or adding one at an arbitrary location,
and observe how the coloring changes. Get used to recognizing when scopes look wrong.

	 2.16	 Local variables
So far, we have encountered two different sorts of variables: fields (instance variables) and
parameters. We are now going to introduce a third kind. All have in common that they store
data, but each sort of variable has a particular role to play.

Section 2.7 noted that a method body (or, in general, a block) can contain both declarations
and statements. To this point, none of the methods we have looked at contain any declara-
tions. The refundBalance method contains three statements and a single declaration.
The declaration introduces a new kind of variable:

public int refundBalance()
{

int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}

M02_BARN7367_06_SE_C02.indd 49 3/4/16 6:44 PM

50 | Chapter 2 ■ Understanding Class Definitions

What sort of variable is amountToRefund? We know that it is not a field, because fields
are defined outside methods. It is also not a parameter, as those are always defined in
the method header. The amountToRefund variable is what is known as a local variable,
because it is defined inside a method body.

Local variable declarations look similar to field declarations, but they never have private
or public as part of them. Constructors can also have local variables. Like formal param-
eters, local variables have a scope that is limited to the statements of the method to which
they belong. Their lifetime is the time of the method execution: they are created when a
method is called and destroyed when a method finishes.

You might wonder why there is a need for local variables if we have fields. Local variables
are primarily used as temporary storage, to help a single method complete its task; we
think of them as data storage for a single method. In contrast, fields are used to store data
that persists through the life of a whole object. The data stored in fields is accessible to all
of the object’s methods. We try to avoid declaring as fields variables that really only have a
local (method-level) usage, whose values don’t have to be retained beyond a single method
call. So even if two or more methods in the same class use local variables for a similar
purpose, it is not appropriate to define them as fields if their values don’t need to persist
beyond the end of the methods.

In the refundBalance method, amountToRefund is used briefly to hold the value of
the balance immediately prior to the latter being set to zero. The method then returns
the remembered value of the balance. The following exercises will help to illustrate
why a local variable is needed here, as we try to write the refundBalance method
without one.

It is quite common to initialize local variables within their declaration. So we could abbre-
viate the first two statements of refundBalance as

int amountToRefund = balance;

but it is still important to keep in mind that there are two steps going on here: declaring the
variable amountToRefund, and giving it an initial value.

Concept
A local varia-
ble is a variable
declared and
used within a
single method.
Its scope and
lifetime are lim-
ited to that of
the method.

Exercise 2.58  Why does the following version of refundBalance not give the
same results as the original?

public int refundBalance()
{

balance = 0;
return balance;

}

What tests can you run to demonstrate that it does not?

Pitfall  A local variable of the same name as a field will prevent the field being accessed
from within a constructor or method. See Section 3.13.2 for a way around this when
necessary.

M02_BARN7367_06_SE_C02.indd 50 3/4/16 6:44 PM

	 2.17 Local variables | 51

Exercise 2.59  What happens if you try to compile the TicketMachine class
with the following version of refundBalance?

public int refundBalance()
{

return balance;
balance = 0;

}

What do you know about return statements that helps to explain why this
version does not compile?

Exercise 2.60  What is wrong with the following version of the constructor of
TicketMachine?

public TicketMachine(int cost)
{

int price = cost;
balance = 0;
total = 0;

}

Try out this version in the better-ticket-machine project. Does this version
compile? Create an object and then inspect its fields. Do you notice something
wrong about the value of the price field in the inspector with this version? Can
you explain why this is?

	 2.17	 Fields, parameters, and local variables
With the introduction of amountToRefund in the refundBalance method, we have now
seen three different kinds of variables: fields, formal parameters, and local variables. It is
important to understand the similarities and differences between these three kinds. Here is
a summary of their features:

■■ All three kinds of variables are able to store a value that is appropriate to their defined
types. For instance, a defined type of int allows a variable to store an integer value.

■■ Fields are defined outside constructors and methods.

■■ Fields are used to store data that persist throughout the life of an object. As such, they
maintain the current state of an object. They have a lifetime that lasts as long as their
object lasts.

■■ Fields have class scope: they are accessible throughout the whole class, so they can
be used within any of the constructors or methods of the class in which they are
defined.

M02_BARN7367_06_SE_C02.indd 51 3/4/16 6:44 PM

52 | Chapter 2 ■ Understanding Class Definitions

■■ As long as they are defined as private, fields cannot be accessed from anywhere out-
side their defining class.

■■ Formal parameters and local variables persist only for the period that a constructor
or method executes. Their lifetime is only as long as a single call, so their values
are lost between calls. As such, they act as temporary rather than permanent storage
locations.

■■ Formal parameters are defined in the header of a constructor or method. They receive
their values from outside, being initialized by the actual parameter values that form part
of the constructor or method call.

■■ Formal parameters have a scope that is limited to their defining constructor or
method.

■■ Local variables are defined inside the body of a constructor or method. They can be
initialized and used only within the body of their defining constructor or method. Local
variables must be initialized before they are used in an expression—they are not given
a default value.

■■ Local variables have a scope that is limited to the block in which they are defined. They
are not accessible from anywhere outside that block.

New programmers often find it difficult to work out whether a variable should be
defined as a field or as a local variable. Temptation is to define all variables as fields,
because they can be accessed from anywhere in the class. In fact, the opposite approach
is a much better rule to adopt: define variables local to a method unless they are clearly
a genuine part of an object’s persistent state. Even if you anticipate using the same
variable in two or more methods, define a separate version locally to each method until
you are absolutely sure that persistence between method calls is justified.

Exercise 2.61  Add a new method, emptyMachine, that is designed to
simulate emptying the machine of money. It should reset total to be zero, but
also return the value that was stored in total before it was reset.

Exercise 2.62  Rewrite the printTicket method so that it declares a local
variable, amountLeftToPay. This should then be initialized to contain the
difference between price and balance. Rewrite the test in the conditional
statement to check the value of amountLeftToPay. If its value is less than or
equal to zero, a ticket should be printed; otherwise, an error message should
be printed stating the amount left to pay. Test your version to ensure that it
behaves in exactly the same way as the original version. Make sure that you
call the method more than once, when the machine is in different states, so
that both parts of the conditional statement will be executed on separate
occasions.

M02_BARN7367_06_SE_C02.indd 52 3/4/16 6:44 PM

2.19 Self-review exercises | 53

Exercise 2.63  Challenge exercise Suppose we wished a single TicketMachine
object to be able to issue tickets of different prices. For instance, users might
press a button on the physical machine to select a discounted ticket price. What
further methods and/or fields would need to be added to TicketMachine to
allow this kind of functionality? Do you think that many of the existing methods
would need to be changed as well?

Save the better-ticket-machine project under a new name, and implement your
changes in the new project.

	 2.18	 Summary of the better ticket machine
In developing a better version of the TicketMachine class, we have been able to address
the major inadequacies of the naïve version. In doing so, we have introduced two new
language constructs: the conditional statement and local variables.

■■ A conditional statement gives us a means to perform a test and then, on the basis of the
result of that test, perform one or the other of two distinct actions.

■■ Local variables allow us to calculate and store temporary values within a constructor
or method. They contribute to the behavior that their defining method implements, but
their values are lost once that constructor or method finishes its execution.

You can find more details of conditional statements and the form their tests can take in
Appendix D.

	 2.19	 Self-review exercises
This chapter has covered a lot of new ground, and we have introduced a lot of new con-
cepts. We will be building on these in future chapters, so it is important that you are com-
fortable with them. Try the following pencil-and-paper exercises as a way of checking that
you are becoming used to the terminology that we have introduced in this chapter. Don’t
be put off by the fact that we suggest that you do these on paper rather than within BlueJ.
It will be good practice to try things out without a compiler.

Exercise 2.64  List the name and return type of this method:

public String getCode()
{

return code;
}

M02_BARN7367_06_SE_C02.indd 53 3/4/16 6:44 PM

54 | Chapter 2 ■ Understanding Class Definitions

Exercise 2.65  List the name of this method and the name and type of its
parameter:

public void setCredits(int creditValue)
{

credits = creditValue;
}

Exercise 2.66  Write out the outer wrapping of a class called Person.
Remember to include the curly brackets that mark the start and end of the class
body, but otherwise leave the body empty.

Exercise 2.67  Write out definitions for the following fields:

■■ a field called name of type String

■■ a field of type int called age

■■ a field of type String called code

■■ a field called credits of type int

Exercise 2.68  Write out a constructor for a class called Module. The
constructor should take a single parameter of type String called moduleCode.
The body of the constructor should assign the value of its parameter to a field
called code. You don’t have to include the definition for code, just the text of
the constructor.

Exercise 2.69  Write out a constructor for a class called Person. The
constructor should take two parameters. The first is of type String and is called
myName. The second is of type int and is called myAge. The first parameter
should be used to set the value of a field called name, and the second should set
a field called age. You don’t have to include the definitions for the fields, just
the text of the constructor.

Exercise 2.70  Correct the error in this method:

public void getAge()
{

return age;
}

Exercise 2.71  Write an accessor method called getName that returns the value
of a field called name, whose type is String.

M02_BARN7367_06_SE_C02.indd 54 3/4/16 6:44 PM

	 2.20 Reviewing a familiar example | 55

If you have managed to complete most or all of these exercises, then you might like to try
creating a new project in BlueJ and making up your own class definition for a Person.
The class could have fields to record the name and age of a person, for instance. If you
were unsure how to complete any of the previous exercises, look back over earlier sections
in this chapter and the source code of TicketMachine to revise what you were unclear
about. In the next section, we provide some further review material.

	 2.20	 Reviewing a familiar example
By this point in the chapter, you have met a lot of new concepts. To help reinforce them, we
shall now revisit a few in a different but familiar context. Along the way, though, watch out
for one or two further new concepts that we will then cover in more detail in later chapters!

Open the lab-classes project that we introduced in Chapter 1, and then examine the Student
class in the editor (Code 2.9).

Code 2.9
The Student
class

Exercise 2.73  Write a method called printDetails for a class that has a
field of type String called name. The printDetails method should print
out a string of the form “The name of this person is”, followed by the value
of the name field. For instance, if the value of the name field is “Helen”, then
printDetails would print:

The name of this person is Helen

Exercise 2.72  Write a mutator method called setAge that takes a single
parameter of type int and sets the value of a field called age.

M02_BARN7367_06_SE_C02.indd 55 3/4/16 6:44 PM

56 | Chapter 2 ■ Understanding Class Definitions

Code 2.9
continued
The Student
class

M02_BARN7367_06_SE_C02.indd 56 3/4/16 6:44 PM

	 2.21 Calling methods | 57

In this small example, the pieces of information we wish to store for a student are their
name, their student ID, and the number of course credits they have obtained so far. All of
this information is persistent during their time as a student, even if some of it changes dur-
ing that time (the number of credits). We want to store this information in fields, therefore,
to represent each student’s state.

The class contains three fields: name, id, and credits. Each of these is initialized in the
single constructor. The initial values of the first two are set from parameter values passed into
the constructor. Each of the fields has an associated get accessor method, but only name
and credits have associated mutator methods. This means that the value of an id field
remains fixed once the object has been constructed. If a field’s value cannot be changed once
initialized, we say that it is immutable. Sometimes we make the complete state of an object
immutable once it has been constructed; the String class is an important example of this.

	 2.21	 Calling methods
The getLoginName method illustrates a new feature that is worth exploring:

public String getLoginName()
{

return name.substring(0,4) +
id.substring(0,3);

}

We are seeing two things in action here:

■■ Calling a method on another object, where the method returns a result.

■■ Using the value returned as a result as part of an expression.

Both name and id are String objects, and the String class has a method, substring,
with the following header:

/**
* Return a new string containing the characters from
* beginIndex to (endIndex-1) from this string.
*/

public String substring(int beginIndex, int endIndex)

Code 2.9
continued
The Student
class

M02_BARN7367_06_SE_C02.indd 57 3/4/16 6:44 PM

58 | Chapter 2 ■ Understanding Class Definitions

Exercise 2.74  Draw a picture of the form shown in Figure 2.3, representing
the initial state of a Student object following its construction, with the
following actual parameter values:

new Student("Benjamin Jonson", "738321")

Exercise 2.75  What would be returned by getLoginName for a student with
name "Henry Moore" and id "557214"?

Exercise 2.76  Create a Student with name "djb" and id "859012". What
happens when getLoginName is called on this student? Why do you think this is?

Exercise 2.77  The String class defines a length accessor method with the
following header:

/**
* Return the number of characters in this string.
*/
public int length()

so the following is an example of its use with the String variable fullName:

fullName.length()

Add conditional statements to the constructor of Student to print an error
message if either the length of the fullName parameter is less than four
characters, or the length of the studentId parameter is less than three
characters. However, the constructor should still use those parameters to set the
name and id fields, even if the error message is printed. Hint: Use if-statements
of the following form (that is, having no else part) to print the error messages.

if(perform a test on one of the parameters) {
Print an error message if the test gave a true result

}

See Appendix D for further details of the different types of if-statements, if
necessary.

Exercise 2.78  Challenge exercise Modify the getLoginName method of
Student so that it always generates a login name, even if either the name or the
id field is not strictly long enough. For strings shorter than the required length,
use the whole string.

An index value of zero represents the first character of a string, so getLoginName takes
the first four characters of the name string and the first three characters of the id string,
then concatenates them together to form a new string. This new string is returned as the
method’s result. For instance, if name is the string "Leonardo da Vinci" and id is
the string "468366", then the string "Leon468" would be returned by this method.

We will learn more about method calling between objects in Chapter 3.

M02_BARN7367_06_SE_C02.indd 58 3/4/16 6:44 PM

	 2.22 Experimenting with expressions: the Code Pad | 59

	 2.22	 Experimenting with expressions:
the Code Pad
In the previous sections, we have seen various expressions to achieve various compu-
tations, such as the total + price calculation in the ticket machine and the name.
substring(0,4) expression in the Student class.

In the remainder of this book, we shall encounter many more such operations, sometimes
written with operator symbols (such as “+”) and sometimes written as method calls (such
as substring). When we encounter new operators and methods, it often helps to try out
with different examples what they do.

The Code Pad, which we briefly used in Chapter 1, can help us experiment with Java expres-
sions (Figure 2.5). Here, we can type in expressions, which will then be immediately evalu-
ated and the results displayed. This is very helpful for trying out new operators and methods.

Exercise 2.79  Consider the following expressions. Try to predict their results,
and then type them in the Code Pad to check your answers.

99 + 3

"cat" + "fish"

"cat" + 9

9 + 3 + "cat"

"cat" + 3 + 9

"catfish".substring(3,4)

"catfish".substring(3,8)

Did you learn anything you did not expect from the exercise? If so, what was it?

Figure 2.5
The BlueJ Code Pad

M02_BARN7367_06_SE_C02.indd 59 3/4/16 6:44 PM

60 | Chapter 2 ■ Understanding Class Definitions

When the result of an expression in the Code Pad is an object (such as a String), it will be
marked with a small red object symbol next to the line showing the result. You can double-
click this symbol to inspect it or drag it onto the object bench for further use. You can also
declare variables and write complete statements in the Code Pad.

Whenever you encounter new operators and method calls, it is a good idea to try them out
here to get a feel for their behavior.

You can also explore the use of variables in the Code Pad. Try the following:

sum = 99 + 3;

You will see the following error message:

Error: cannot find symbol - variable sum

This is because Java requires that every variable (sum, in this case) be given a type before it
can be used. Recall that every time a field, parameter, or local variable has been introduced
for the first time in the source, it has had a type name in front of it, such as int or String.
In light of this, now try the following in the Code Pad:

int sum = 0;

sum = 99 + 3;

This time there is no complaint, because sum has been introduced with a type and can be
used without repeating the type thereafter. If you then type

sum

on a line by itself (with no semicolon), you will see the value it currently stores.

Now try this in the Code Pad:

String swimmer = "cat" + "fish";

swimmer

One again, we have given an appropriate type to the variable swimmer, allowing us to
make an assignment to it and find out what it stores. This time we chose to set it to the
value we wanted at the same time as declaring it.

What would you expect to see after the following?

String fish = swimmer;

fish

Try it out. What do you think has happened in the assignment?

M02_BARN7367_06_SE_C02.indd 60 3/4/16 6:44 PM

2.23 Summary | 61

Terms introduced in this chapter:

field, instance variable, constructor, method, method header, method body,
actual parameter, formal parameter, accessor, mutator, declaration, initialization,
block, statement, assignment statement, conditional statement, return
statement, return type, comment, expression, operator, variable, local variable,
scope, lifetime

Exercise 2.80  Open the Code Pad in the better-ticket-machine project. Type
the following in the Code Pad:

TicketMachine t1 = new TicketMachine(1000);

t1.getBalance()

t1.insertMoney(500);

t1.getBalance()

Take care to type these lines exactly as they appear here; pay particular attention
to whether or not there is a semicolon at the end of the line. Note what the calls
to getBalance return in each case.

Exercise 2.81  Now add the following in the Code Pad:

TicketMachine t2 = t1;

What would you expect a call to t2.getBalance() to return? Try it out.

Exercise 2.82  Add the following:

t1.insertMoney(500);

What would you expect the following to return? Think carefully about this
before you try it, and be sure to use the t2 variable this time.

t2.getBalance()

Did you get the answer you expected? Can you find a connection between the
variables t1 and t2 that would explain what is happening?

	 2.23	 Summary
In this chapter, we have covered the basics of how to create a class definition. Classes con-
tain fields, constructors, and methods that define the state and behavior of objects. Within
the body of a constructor or method, a sequence of statements implements that part of its
behavior. Local variables can be used as temporary data storage to assist with that. We
have covered assignment statements and conditional statements, and will be adding further
types of statements in later chapters.

M02_BARN7367_06_SE_C02.indd 61 3/4/16 6:44 PM

62 | Chapter 2 ■ Understanding Class Definitions

Concept summary
■■ object creation Some objects cannot be constructed unless extra information is

provided.

■■ field Fields store data for an object to use. Fields are also known as instance variables.

■■ comment Comments are inserted into the source code of a class to provide explanations
to human readers. They have no effect on the functionality of the class.

■■ constructor Constructors allow each object to be set up properly when it is first created.

■■ scope The scope of a variable defines the section of source code from which the variable
can be accessed.

■■ lifetime The lifetime of a variable describes how long the variable continues to exist
before it is destroyed.

■■ assignment statement Assignment statements store the value represented by the right-
hand side of the statement in the variable named on the left.

■■ accessor method Accessor methods return information about the state of an object.

■■ mutator method Mutator methods change the state of an object.

■■ println The method System.out.println prints its parameter to the text terminal.

■■ conditional statement A conditional statement takes one of two possible actions based
upon the result of a test.

■■ boolean expression Boolean expressions have only two possible values: true and false.
They are commonly found controlling the choice between the two paths through a con-
ditional statement.

■■ local variable A local variable is a variable declared and used within a single method. Its
scope and lifetime are limited to that of the method.

Exercise 2.83

Below is the outline for a Book class, which can be found in the book-exercise
project. The outline already defines two fields and a constructor to initialize
the fields. In this and the next few exercises, you will add features to the class
outline.

The following exercises are designed to help you experiment with the concepts of Java
that we have discussed in this chapter. You will create your own classes that contain
elements such as fields, constructors, methods, assignment statements, and conditional
statements.

M02_BARN7367_06_SE_C02.indd 62 3/4/16 6:44 PM

2.23 Summary | 63

Add two accessor methods to the class—getAuthor and getTitle—that
return the author and title fields as their respective results. Test your class by
creating some instances and calling the methods.

/**
* A class that maintains information on a book.
* This might form part of a larger application such
* as a library system, for instance.
*
* @author (Insert your name here.)
* @version (Insert today’s date here.)
*/

public class Book

{
// The fields.
private String author;
private String title;

/**
* Set the author and title fields when this object
* is constructed.
*/

public Book(String bookAuthor, String bookTitle)

{
author = bookAuthor;
title = bookTitle;

}

// Add the methods here...
}

Exercise 2.84  Add two methods, printAuthor and printTitle, to the
outline Book class. These should print the author and title fields, respectively,
to the terminal window.

Exercise 2.85  Add a field, pages, to the Book class to store the number
of pages. This should be of type int, and its initial value should be passed to
the single constructor, along with the author and title strings. Include an
appropriate getPages accessor method for this field.

Exercise 2.86 Are the Book objects you have implemented immutable? Justify
your answer.

M02_BARN7367_06_SE_C02.indd 63 3/4/16 6:44 PM

64 | Chapter 2 ■ Understanding Class Definitions

Exercise 2.87  Add a method, printDetails, to the Book class. This should
print details of the author, title, and pages to the terminal window. It is your
choice how the details are formatted. For instance, all three items could be
printed on a single line, or each could be printed on a separate line. You might
also choose to include some explanatory text to help a user work out which is
the author and which is the title, for example

Title: Robinson Crusoe, Author: Daniel Defoe, Pages: 232

Exercise 2.88  Add a further field, refNumber, to the Book class. This field can
store a reference number for a library, for example. It should be of type String
and initialized to the zero length string ("") in the constructor, as its initial value
is not passed in a parameter to the constructor. Instead, define a mutator for it
with the following header:

public void setRefNumber(String ref)

The body of this method should assign the value of the parameter to the
refNumber field. Add a corresponding getRefNumber accessor to help you
check that the mutator works correctly.

Exercise 2.89  Modify your printDetails method to include printing the
reference number. However, the method should print the reference number only
if it has been set—that is, if the refNumber string has a non-zero length. If it
has not been set, then print the string "ZZZ" instead. Hint: Use a conditional
statement whose test calls the length method on the refNumber string.

Exercise 2.90  Modify your setRefNumber mutator so that it sets the
refNumber field only if the parameter is a string of at least three characters. If it
is less than three, then print an error message and leave the field unchanged.

Exercise 2.91  Add a further integer field, borrowed, to the Book class.
This keeps a count of the number of times a book has been borrowed. Add a
mutator, borrow, to the class. This should update the field by 1 each time it is
called. Include an accessor, getBorrowed, that returns the value of this new
field as its result. Modify printDetails so that it includes the value of this field
with an explanatory piece of text.

Exercise 2.92  Add a further boolean field, courseText, to the Book class.
This records whether or not a book is being used as a text book on a course.
The field should be set through a parameter to the constructor, and the field is
immutable. Provide an accessor method for it called isCourseText.

M02_BARN7367_06_SE_C02.indd 64 3/4/16 6:44 PM

2.23 Summary | 65

Exercise 2.93  Challenge exercise Create a new project, heater-exercise, within
BlueJ. Edit the details in the project description—the text note you see in the
diagram. Create a class, Heater, that contains a single field, temperature
whose type is double-precision floating point—see Appendix B, Section B.1, for
the Java type name that corresponds to this description. Define a constructor
that takes no parameters. The temperature field should be set to the value
15.0 in the constructor. Define the mutators warmer and cooler, whose effect
is to increase or decrease the value of temperature by 5.0° respectively. Define
an accessor method to return the value of temperature.

Exercise 2.94  Challenge exercise Modify your Heater class to define three
new double-precision floating point fields: min, max, and increment. The
values of min and max should be set by parameters passed to the constructor.
The value of increment should be set to 5.0 in the constructor. Modify the
definitions of warmer and cooler so that they use the value of increment
rather than an explicit value of 5.0. Before proceeding further with this exercise,
check that everything works as before.

Now modify the warmer method so that it will not allow the temperature to be
set to a value greater than max. Similarly modify cooler so that it will not allow
temperature to be set to a value less than min. Check that the class works
properly. Now add a method, setIncrement, that takes a single parameter of
the appropriate type and uses it to set the value of increment. Once again, test
that the class works as you would expect it to by creating some Heater objects
within BlueJ. Do things still work as expected if a negative value is passed to
the setIncrement method? Add a check to this method to prevent a negative
value from being assigned to increment.

M02_BARN7367_06_SE_C02.indd 65 3/4/16 6:44 PM

M02_BARN7367_06_SE_C02.indd 66 3/4/16 6:44 PM

