
David J. Barnes and Michael Kölling

University of Kent

Sixth Edition

Objects First with Java™

A Practical Introduction Using BlueJ

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_BARN7367_06_SE_FM.indd 1 10/03/16 4:08 pm

Foreword xiv
Preface xv
List of Projects Discussed in Detail in This Book xxv
Acknowledgments xxviii

 Part 1 Foundations of Object Orientation 1

 Chapter 1 Objects and Classes 3

 1.1 Objects and classes 3
 1.2 Creating objects 4
 1.3 Calling methods 5
 1.4 Parameters 6
 1.5 Data types 7
 1.6 Multiple instances 8
 1.7 State 9
 1.8 What is in an object? 10
 1.9 Java code 11
 1.10 Object interaction 12
 1.11 Source code 13
 1.12 Another example 15
 1.13 Return values 15
 1.14 Objects as parameters 16
 1.15 Summary 17

 Chapter 2 Understanding Class Definitions 21

 2.1 Ticket machines 21
 2.2 Examining a class definition 23
 2.3 The class header 25
 2.4 Fields, constructors, and methods 26
 2.5 Parameters: receiving data 32
 2.6 Assignment 34

Contents

A01_BARN7367_06_SE_FM.indd 5 10/03/16 4:08 pm

vi | Contents

 2.7 Methods 35
 2.8 Accessor and mutator methods 36
 2.9 Printing from methods 39
 2.10 Method summary 42
 2.11 Summary of the naïve ticket machine 42
 2.12 Reflecting on the design of the ticket machine 43
 2.13 Making choices: the conditional statement 45
 2.14 A further conditional-statement example 47
 2.15 Scope highlighting 48
 2.16 Local variables 50
 2.17 Fields, parameters, and local variables 51
 2.18 Summary of the better ticket machine 53
 2.19 Self-review exercises 53
 2.20 Reviewing a familiar example 55
 2.21 Calling methods 57
 2.22 Experimenting with expressions: the Code Pad 59
 2.23 Summary 61

 Chapter 3 Object Interaction 67

 3.1 The clock example 67
 3.2 Abstraction and modularization 68
 3.3 Abstraction in software 69
 3.4 Modularization in the clock example 69
 3.5 Implementing the clock display 70
 3.6 Class diagrams versus object diagrams 71
 3.7 Primitive types and object types 72
 3.8 The NumberDisplay class 72
 3.9 The ClockDisplay class 80
 3.10 Objects creating objects 83
 3.11 Multiple constructors 84
 3.12 Method calls 84
 3.13 Another example of object interaction 88
 3.14 Using a debugger 92
 3.15 Method calling revisited 96
 3.16 Summary 97

 Chapter 4 Grouping Objects 101

 4.1 Building on themes from Chapter 3 101
 4.2 The collection abstraction 102

A01_BARN7367_06_SE_FM.indd 6 10/03/16 4:08 pm

Contents | vii

 4.3 An organizer for music files 103
 4.4 Using a library class 104
 4.5 Object structures with collections 107
 4.6 Generic classes 109
 4.7 Numbering within collections 110
 4.8 Playing the music files 113
 4.9 Processing a whole collection 115
 4.10 Indefinite iteration 120
 4.11 Improving structure—the Track class 128
 4.12 The Iterator type 131
 4.13 Summary of the music-organizer project 135
 4.14 Another example: an auction system 137
 4.15 Summary 147

 Chapter 5 Functional Processing of Collections (Advanced) 149

 5.1 An alternative look at themes from Chapter 4 149
 5.2 Monitoring animal populations 150
 5.3 A first look at lambdas 154
 5.4 The forEach method of collections 156
 5.5 Streams 158
 5.6 Summary 168

 Chapter 6 More-Sophisticated Behavior 171

 6.1 Documentation for library classes 172
 6.2 The TechSupport system 173
 6.3 Reading class documentation 178
 6.4 Adding random behavior 183
 6.5 Packages and import 189
 6.6 Using maps for associations 190
 6.7 Using sets 195
 6.8 Dividing strings 195
 6.9 Finishing the TechSupport system 197
 6.10 Autoboxing and wrapper classes 199
 6.11 Writing class documentation 201
 6.12 Public versus private 204
 6.13 Learning about classes from their interfaces 206
 6.14 Class variables and constants 211
 6.15 Class methods 214
 6.16 Executing without BlueJ 216

A01_BARN7367_06_SE_FM.indd 7 10/03/16 4:08 pm

viii | Contents

 6.17 Further advanced material 216
 6.18 Summary 220

 Chapter 7 Fixed-Size Collections—Arrays 223

 7.1 Fixed-size collections 223
 7.2 Arrays 224
 7.3 A log-file analyzer 224
 7.4 The for loop 230
 7.5 The automaton project 236
 7.6 Arrays of more than one dimension (advanced) 244
 7.7 Arrays and streams (advanced) 251
 7.8 Summary 252

 Chapter 8 Designing Classes 255

 8.1 Introduction 256
 8.2 The world-of-zuul game example 257
 8.3 Introduction to coupling and cohesion 259
 8.4 Code duplication 260
 8.5 Making extensions 263
 8.6 Coupling 266
 8.7 Responsibility-driven design 270
 8.8 Localizing change 273
 8.9 Implicit coupling 274
 8.10 Thinking ahead 277
 8.11 Cohesion 278
 8.12 Refactoring 282
 8.13 Refactoring for language independence 286
 8.14 Design guidelines 291
 8.15 Summary 292

 Chapter 9 Well-Behaved Objects 295

 9.1 Introduction 295
 9.2 Testing and debugging 296
 9.3 Unit testing within BlueJ 297
 9.4 Test automation 304
 9.5 Refactoring to use with streams (advanced) 311
 9.6 Debugging 312
 9.7 Commenting and style 314
 9.8 Manual walkthroughs 315

A01_BARN7367_06_SE_FM.indd 8 10/03/16 4:08 pm

Contents | ix

 9.9 Print statements 320
 9.10 Debuggers 324
 9.11 Debugging streams (advanced) 325
 9.12 Choosing a debugging strategy 326
 9.13 Putting the techniques into practice 327
 9.14 Summary 327

 Part 2 Application Structures 329

 Chapter 10 Improving Structure with Inheritance 331

 10.1 The network example 331
 10.2 Using inheritance 343
 10.3 Inheritance hierarchies 345
 10.4 Inheritance in Java 346
 10.5 Network: adding other post types 349
 10.6 Advantages of inheritance (so far) 351
 10.7 Subtyping 352
 10.8 The Object class 358
 10.9 The collection hierarchy 359
 10.10 Summary 359

 Chapter 11 More about Inheritance 363

 11.1 The problem: network’s display method 363
 11.2 Static type and dynamic type 365
 11.3 Overriding 368
 11.4 Dynamic method lookup 370
 11.5 super call in methods 373
 11.6 Method polymorphism 374
 11.7 Object methods: toString 374
 11.8 Object equality: equals and hashCode 377
 11.9 Protected access 379
 11.10 The instanceof operator 381
 11.11 Another example of inheritance with overriding 382
 11.12 Summary 385

 Chapter 12 Further Abstraction Techniques 389

 12.1 Simulations 389
 12.2 The foxes-and-rabbits simulation 390
 12.3 Abstract classes 405

A01_BARN7367_06_SE_FM.indd 9 10/03/16 4:08 pm

x | Contents

 12.4 More abstract methods 412
 12.5 Multiple inheritance 414
 12.6 Interfaces 417
 12.7 A further example of interfaces 425
 12.8 The Class class 427
 12.9 Abstract class or interface? 427
 12.10 Event-driven simulations 428
 12.11 Summary of inheritance 429
 12.12 Summary 430

 Chapter 13 Building Graphical User Interfaces 433

 13.1 Introduction 433
 13.2 Components, layout, and event handling 434
 13.3 AWT and Swing 435
 13.4 The ImageViewer example 435
 13.5 ImageViewer 1.0: the first complete version 447
 13.6 ImageViewer 2.0: improving program structure 461
 13.7 ImageViewer 3.0: more interface components 467
 13.8 Inner classes 471
 13.9 Further extensions 476
 13.10 Another example: MusicPlayer 478
 13.11 Summary 481

 Chapter 14 Handling Errors 483

 14.1 The address-book project 484
 14.2 Defensive programming 488
 14.3 Server error reporting 491
 14.4 Exception-throwing principles 495
 14.5 Exception handling 501
 14.6 Defining new exception classes 508
 14.7 Using assertions 510
 14.8 Error recovery and avoidance 513
 14.9 File-based input/output 516
 14.10 Summary 527

 Chapter 15 Designing Applications 529

 15.1 Analysis and design 529
 15.2 Class design 536
 15.3 Documentation 538

A01_BARN7367_06_SE_FM.indd 10 10/03/16 4:08 pm

Contents | xi

 15.4 Cooperation 539
 15.5 Prototyping 539
 15.6 Software growth 540
 15.7 Using design patterns 542
 15.8 Summary 548

 Chapter 16 A Case Study 551

 16.1 The case study 551
 16.2 Analysis and design 552
 16.3 Class design 556
 16.4 Iterative development 561
 16.5 Another example 570
 16.6 Taking things further 570

 Appendix A: Working with a BlueJ Project 571

 A.1 Installing BlueJ 571
 A.2 Opening a project 571
 A.3 The BlueJ debugger 571
 A.4 Configuring BlueJ 571
 A.5 Changing the interface language 572
 A.6 Using local API documentation 572
 A.7 Changing the new class templates 572

 Appendix B: Java Data Types 573

 B.1 Primitive types 573
 B.2 Casting of primitive types 574
 B.3 Object types 574
 B.4 Wrapper classes 575
 B.5 Casting of object types 575

 Appendix C: Operators 577

 C.1 Arithmetic expressions 577
 C.2 Boolean expressions 578
 C.3 Short-circuit operators 579

 Appendix D: Java Control Structures 581

 D.1 Control structures 581
 D.2 Selection statements 581

A01_BARN7367_06_SE_FM.indd 11 10/03/16 4:08 pm

xii | Contents

 D.3 Loops 583
 D.4 Exceptions 585
 D.5 Assertions 587

 Appendix E: Running Java without BlueJ 589

 E.1 Executing without BlueJ 589
 E.2 Creating executable .jar files 591
 E.3 Developing without BlueJ 591

 Appendix F: Using the Debugger 593

 F.1 Breakpoints 594
 F.2 The control buttons 594
 F.3 The variable displays 595
 F.4 The Call Sequence display 596
 F.5 The Threads display 596

 Appendix G: JUnit Unit-Testing Tools 597

 G.1 Enabling unit-testing functionality 597
 G.2 Creating a test class 597
 G.3 Creating a test method 597
 G.4 Test assertions 598
 G.5 Running tests 598
 G.6 Fixtures 598

 Appendix H: Teamwork Tools 599

 H.1 Server setup 599
 H.2 Enabling teamwork functionality 599
 H.3 Sharing a project 599
 H.4 Using a shared project 599
 H.5 Update and commit 600
 H.6 More information 600

 Appendix I: Javadoc 601

 I.1 Documentation comments 601
 I.2 BlueJ support for javadoc 603

 Appendix J: Program Style Guide 605

 J.1 Naming 605
 J.2 Layout 605

A01_BARN7367_06_SE_FM.indd 12 10/03/16 4:08 pm

 J.3 Documentation 606
 J.4 Language-use restrictions 607
 J.5 Code idioms 608

 Appendix K: Important Library Classes 609

 K.1 The java.lang package 609
 K.2 The java.util package 610
 K.3 The java.io and java.nio.file packages 611
 K.4 The java.util.function package 612
 K.5 The java.net package 612
 K.6 Other important packages 613

 Index 615

Contents | xiii

A01_BARN7367_06_SE_FM.indd 13 10/03/16 4:08 pm

Foreword

by James Gosling, creator of Java

Watching my daughter Kate and her middle-school classmates struggle through a Java
course using a commercial IDE was a painful experience. The sophistication of the tool
added significant complexity to the task of learning. I wish that I had understood earlier
what was happening. As it was, I wasn’t able to talk to the instructor about the problem until
it was too late. This is exactly the sort of situation for which BlueJ is a perfect fit.

BlueJ is an interactive development environment with a mission: it is designed to be used
by students who are learning how to program. It was designed by instructors who have
been in the classroom facing this problem every day. It’s been refreshing to talk to the
folks who developed BlueJ: they have a very clear idea of what their target is. Discussions
tended to focus more on what to leave out, than what to throw in. BlueJ is very clean and
very targeting.

Nonetheless, this book isn’t about BlueJ. It is about programming.

In Java.

Over the past several years Java has become widely used in the teaching of programming.
This is for a number of reasons. One is that Java has many characteristics that make it easy
to teach: it has a relatively clean definition; extensive static analysis by the compiler informs
students of problems early on; and it has a very robust memory model that eliminates most
“mysterious” errors that arise when object boundaries or the type system are compromised.
Another is that Java has become commercially very important.

This book confronts head-on the hardest concept to teach: objects. It takes students from
their very first steps all the way through to some very sophisticated concepts.

It manages to solve one of the stickiest questions in writing a book about programming: how
to deal with the mechanics of actually typing in and running a program. Most books silently
skip over the issue, or touch it lightly, leaving the instructor with the burden of figuring out
how to relate the book’s material to the actual steps that students have to go through to solve
the exercises. Instead, this book assumes the use of BlueJ and is able to integrate the tasks of
 understanding the concepts with the mechanics of how students can explore them.

I wish it had been around for my daughter last year. Maybe next year . . .

A01_BARN7367_06_SE_FM.indd 14 10/03/16 4:08 pm

Preface

New to the sixth edition
This is the sixth edition of this book, and—as always with a new edition—the content has
been adapted to the latest developments in object-oriented programs.
Many of the changes this time can, on the surface, be attributed to a new version of Java:
Java 8. This version was released in 2014 and is now very widely used in practice. In fact, it
is the fastest adoption of any new Java version ever released; so it is time also to change the
way we teach novice students.
The changes are, however, more than merely the addition of a few new language constructs.
The most significant new aspects in Java 8 center around new constructs to support a
(partial) functional programming style. And it is the growing popularity of functional
programming that is driving this change. The difference is much deeper, and much more
fundamental, than just adding new syntax. And it is the renaissance of the functional
ideas in modern programming generally—not only the existence of Java 8—that makes it
timely to cover these aspects in a modern edition of a programming textbook.
The ideas and techniques of functional programming, while fairly old and well known
in principle, have seen a marked boost of popularity in recent years, with new languages
being developed and selected functional techniques being incorporated into existing,
traditionally imperative languages. One of the primary reasons for this is the change in
computing hardware available, and—with it—the changing nature of problems we wish
to tackle.
Almost all programming platforms now are concurrent. Even mid-range laptops and mobile
phones now have processors with multiple cores, making parallel processing a real possibil-
ity on everyday devices. But, in practice this is not happening on a large scale.
Writing applications that make optimal use of concurrent processing and multiple proces-
sors is very, very difficult. Most applications available today do not exploit current hard-
ware to a degree approaching anything that is theoretically possible.
This is not going to change much: the opportunity (and challenge) of parallel hardware will
remain, and programming these devices with traditional imperative languages will not get
any easier.
This is where functional programming enters the picture.

A01_BARN7367_06_SE_FM.indd 15 10/03/16 4:08 pm

xvi | Preface

With functional language constructs, it is possible to automate some concurrency very
efficiently. Programs can potentially make use of multiple cores without much effort on
the side of the programmer. Functional constructs have other advantages—more elegant
 expression for certain problems and often clearer readability—but it is the ability to deal
with parallelism that will ensure that functional aspects of programming are going to stay
with us for a long time to come.
Every teacher who wants to prepare their students for the future should give them some
understanding of functional aspects as well. Without it, one will no longer be able to become
a master programmer. A novice certainly does not have to master all of functional program-
ming, but a basic understanding of what it is—and what we can achieve with it—is rapidly
becoming essential.
Exactly when functional techniques should be introduced is an interesting question. We
do not believe that there is a single right answer for this; various sequences are possible.
Functional programming could be covered as an advanced topic at the end of the traditional
corpus of this book, or it could be addressed when we first encounter the topics where it
is applicable, as an alternative to the imperative techniques. It could even be covered first.
An additional question is how to treat the traditional style of programming in those areas
where functional constructs are now available: should they be replaced, or do both need to
be covered?
For this book, we recognize that different teachers will have different constraints and
 preferences. Therefore, we have designed a structure that—we hope—allows different
approaches, depending on the preference of the learner or teacher.

 ■ We have not replaced the “old-style” techniques. We cover the new, functional approach
in addition to the existing material. Functional constructs in Java are most prominent
when working with collections of objects, and the mastering traditional approach—using
loops and explicit iteration—is still essential for any programmer. Not only are there
millions of lines of code out there that are written in this style—and will be continued
to be written in this style—but there are also specific cases where it is necessary to use
these techniques even if one generally favors the new functional constructs. Mastering
both is the goal.

 ■ We present the new functional-construct-oriented material in the book where we discuss
the problems that these constructs address. For example, we address functional collection
processing as soon as we encounter collections.

 ■ Chapters and sections covering this new material are, however, clearly marked as
“advanced,” and are structured in a manner that they can safely be skipped on first read-
ing (or left out altogether).

 ■ The previous two points enable different approaches to studying this book: if time per-
mits, it can be read in the sequence it is presented, covering the full scope of material—
including functional approaches as alternatives to imperative ones—as the problems are
encountered which they address. If time is short, these advanced sections can be skipped,
and emphasis can be placed on a thorough grounding in imperative, object-oriented
programming. (We should emphasize that functional is not a contradiction to object-
oriented: whether the functional material is included in the study, or the course emphasis

A01_BARN7367_06_SE_FM.indd 16 10/03/16 4:08 pm

 Preface | xvii

is largely on imperative techniques, every reader of this book will emerge with a good
understanding of object orientation!) Yet another way to approach the material is to skip
the advanced sections initially, and cover them as a separate unit at a later time. They
present alternative approaches to other constructs and can be covered independently.

We hope this makes clear that this book provides flexibility where readers want it, but also
guidance where a reader has no clear preference: just read it in the sequence it is written.
Apart from the major changes described so far, this edition also presents numerous minor
improvements. The overall structure, tone, and approach of the book is unchanged; it has
worked very well in the past, and there is no reason to deviate from it. However, we
 continuously re-evaluate and seek to improve where we see opportunities. We now have
almost 15 years of continuous experience teaching with this book, and this is reflected in the
many minor improvements throughout.
This book is an introduction to object-oriented programming for beginners. The main focus
of the book is general object-oriented and programming concepts from a software engineer-
ing perspective.
While the first chapters are written for students with no programming experience, later
chapters are suitable for more advanced or professional programmers as well. In particular,
programmers with experience in a non-object-oriented language who wish to migrate their
skills into object orientation should also be able to benefit from the book.
We use two tools throughout the book to enable the concepts introduced to be put into prac-
tice: the Java programming language and the Java development environment BlueJ.

Java
Java was chosen because of both its language design and its popularity. The Java programming
language itself provides a clean implementation of most of the important object-oriented
concepts, and serves well as an introductory teaching language. Its popularity ensures an
immense pool of support resources.
In any subject area, having a variety of sources of information available is very helpful,
for teachers and students alike. For Java in particular, countless books, tutorials, exercises,
 compilers, environments, and quizzes already exist, in many different kinds and styles.
Many of them are online and many are available free of charge. The huge amount of high
 quality support material makes Java an excellent choice as an introduction to object-oriented
programming.
With so much Java material already available, is there still room for more to be said about it?
We think there is, and the second tool we use is one of the reasons . . .

BlueJ
BlueJ deserves much comment. This book is unique in its completely integrated use of the
BlueJ environment.
BlueJ is a Java development environment that is being developed and maintained by the
Computing Education Research Group at the University of Kent in Canterbury, UK,

A01_BARN7367_06_SE_FM.indd 17 10/03/16 4:08 pm

xviii | Preface

 explicitly as an environment for teaching introductory object-oriented programming. It is
better suited to introductory teaching than other environments for a variety of reasons:

 ■ The user interface is much simpler. Beginning students can typically use the BlueJ
environment in a competent manner after 20 minutes of introduction. From then on,
instruction can concentrate on the important concepts at hand—object orientation and
Java—and no time needs to be wasted talking about environments, file systems, class
paths, or DLL conflicts.

 ■ The environment supports important teaching tools not available in other environments.
One of them is visualization of class structure. BlueJ automatically displays a UML-like
diagram representing the classes and relationships in a project. Visualizing these impor-
tant concepts is a great help to both teachers and students. It is hard to grasp the concept
of an object when all you ever see on the screen is lines of code! The diagram notation is
a simple subset of UML, tailored to the needs of beginning students. This makes it easy
to understand, but also allows migration to full UML in later courses.

 ■ One of the most important strengths of the BlueJ environment is the user’s ability to
directly create objects of any class, and then to interact with their methods. This creates
the opportunity for direct experimentation with objects, with little overhead in the envi-
ronment. Students can almost “feel” what it means to create an object, call a method,
pass a parameter, or receive a return value. They can try out a method immediately after
it has been written, without the need to write test drivers. This facility is an invaluable
aid in understanding the underlying concepts and language details.

 ■ BlueJ includes numerous other tools and characteristics that are specifically designed
for students of software development. Some are aimed at helping with understanding
fundamental concepts (such as the scope highlighting in the editor), some are designed
to introduce additional tools and techniques, such as integrated testing using JUnit, or
teamwork using a version control system, such as Subversion, once the students are
ready. Several of these features are unique to the BlueJ environment.

BlueJ is a full Java environment. It is not a cut-down, simplified version of Java for teach-
ing. It runs on top of Oracle’s Java Development Kit, and makes use of the standard com-
piler and virtual machine. This ensures that it always conforms to the official and most
up-to-date Java specification.
The authors of this book have many years of teaching experience with the BlueJ environ-
ment (and many more years without it before that). We both have experienced how the
use of BlueJ has increased the involvement, understanding, and activity of students in our
courses. One of the authors is also the development lead of the BlueJ system.

Real objects first
One of the reasons for choosing BlueJ was that it allows an approach where teachers truly
deal with the important concepts first. “Objects first” has been a battle cry for many text-
book authors and teachers for some time. Unfortunately, the Java language does not make
this noble goal very easy. Numerous hurdles of syntax and detail have to be overcome before

A01_BARN7367_06_SE_FM.indd 18 10/03/16 4:08 pm

Preface | xix

the first experience with a living object arises. The minimal Java program to create and call
an object typically includes

 ■ writing a class;

 ■ writing a main method, including concepts such as static methods, parameters, and arrays
in the signature;

 ■ a statement to create the object (“new”);

 ■ an assignment to a variable;

 ■ the variable declaration, including variable type;

 ■ a method call, using dot notation;

 ■ possibly a parameter list.

As a result, most textbooks typically either

 ■ have to work their way through this forbidding list, and only reach objects somewhere
around the fourth chapter; or

 ■ use a “Hello, world”-style program with a single static main method as the first example,
thus not creating any objects at all.

With BlueJ, this is not a problem. A student can create an object and call its methods as
the very first activity! Because users can create and interact with objects directly, con-
cepts such as classes, objects, methods, and parameters can easily be discussed in a con-
crete manner before looking at the first line of Java syntax. Instead of explaining more
about this here, we suggest that the curious reader dip into Chapter 1—things will quickly
become clear then.

An iterative approach
Another important aspect of this book is that it follows an iterative style. In the computing
education community, a well-known educational design pattern exists that states that impor-
tant concepts should be taught early and often.1 It is very tempting for textbook authors to
try and say everything about a topic at the point where it is introduced. For example, it is
common, when introducing types, to give a full list of built-in data types, or to discuss all
available kinds of loop when introducing the concept of a loop.
These two approaches conflict: we cannot concentrate on discussing important concepts
first, and at the same time provide complete coverage of all topics encountered. Our experi-
ence with textbooks is that much of the detail is initially distracting, and has the effect of
drowning the important points, thus making them harder to grasp.

1 The “Early Bird” pattern, in J. Bergin: “Fourteen Pedagogical Patterns for Teaching Computer
 Science,” Proceedings of the Fifth European Conference on Pattern Languages of Programs
 (EuroPLop 2000), Irsee, Germany, July 2000.

A01_BARN7367_06_SE_FM.indd 19 10/03/16 4:08 pm

xx | Preface

In this book we touch on all of the important topics several times, both within the same
chapter and across different chapters. Concepts are usually introduced at a level of detail
necessary for understanding and applying to the task at hand. They are revisited later in
a different context, and understanding deepens as the reader continues through the chap-
ters. This approach also helps to deal with the frequent occurrence of mutual dependencies
between concepts.
Some teachers may not be familiar with the iterative approach. Looking at the first few
chapters, teachers used to a more sequential introduction will be surprised about the number
of concepts touched on this early. It may seem like a steep learning curve.
It is important to understand that this is not the end of the story. Students are not expected
to understand everything about these concepts immediately. Instead, these fundamental
concepts will be revisited again and again throughout the book, allowing students to get
a deeper understanding over time. Since their knowledge level changes as they work their
way forward, revisiting important topics later allows them to gain a deeper understanding
overall.
We have tried this approach with students many times. Sometimes students have fewer
 problems dealing with it than some long-time teachers. And remember: a steep learning
curve is not a problem as long as you ensure that your students can climb it!

No complete language coverage
Related to our iterative approach is the decision not to try to provide complete coverage of
the Java language within the book.
The main focus of this book is to convey object-oriented programming principles in general,
not Java language details in particular. Students studying with this book may be working as
software professionals for the next 30 or 40 years of their life—it is a fairly safe bet that the
majority of their work will not be in Java. Every serious textbook must attempt to prepare
them for something more fundamental than the language flavor of the day.
On the other hand, many Java details are essential to actually doing practical programming
work. In this book we cover Java constructs in as much detail as is necessary to illustrate the
concepts at hand and implement the practical work. Some constructs specific to Java have
been deliberately left out of the discussion.
We are aware that some instructors will choose to cover some topics that we do not discuss in
detail. However, instead of trying to cover every possible topic ourselves (and thus blowing
the size of this book out to 1500 pages), we deal with it using hooks. Hooks are pointers,
often in the form of questions that raise the topic and give references to an appendix or
outside material. These hooks ensure that a relevant topic is brought up at an appropriate
time, and leave it up to the reader or the teacher to decide to what level of detail that topic
should be covered. Thus, hooks serve as a reminder of the existence of the topic, and as a
placeholder indicating a point in the sequence where discussion can be inserted.
Individual teachers can decide to use the book as it is, following our suggested sequence, or
to branch out into sidetracks suggested by the hooks in the text.

A01_BARN7367_06_SE_FM.indd 20 10/03/16 4:08 pm

Preface | xxi

Chapters also often include several questions suggesting discussion material related to the
topic, but not discussed in this book. We fully expect teachers to discuss some of these ques-
tions in class, or students to research the answers as homework exercises.

Project-driven approach
The introduction of material in the book is project driven. The book discusses numerous
programming projects and provides many exercises. Instead of introducing a new construct
and then providing an exercise to apply this construct to solve a task, we first provide a
goal and a problem. Analyzing the problem at hand determines what kinds of solutions we
need. As a consequence, language constructs are introduced as they are needed to solve the
problems before us.
Early chapters provide at least two discussion examples. These are projects that are dis-
cussed in detail to illustrate the important concepts of each chapter. Using two very different
examples supports the iterative approach: each concept is revisited in a different context
after it is introduced.
In designing this book we have tried to use a lot of different example projects. This
will hopefully serve to capture the reader’s interest, and also illustrate the variety of
 different contexts in which the concepts can be applied. We hope that our projects serve
to give teachers good starting points and many ideas for a wide variety of interesting
assignments.
The implementation for all our projects is written very carefully, so that many peripheral
issues may be studied by reading the projects’ source code. We are strong believers in learn-
ing by reading and imitating good examples. For this to work, however, it’s important that
the examples are well written and worth imitating. We have tried to create great examples.
All projects are designed as open-ended problems. While one or more versions of each
 problem are discussed in detail in the book, the projects are designed so that further
 extensions and improvements can be done as student projects. Complete source code for all
projects is included. A list of projects discussed in this book is provided on page xxv.

Concept sequence rather than language constructs
One other aspect that distinguishes this book from many others is that it is structured along
fundamental software development tasks, not necessarily according to the particular Java
language constructs. One indicator of this is the chapter headings. In this book you will
not find traditional chapter titles such as “Primitive data types” or “Control structures.”
Structuring by fundamental development tasks allows us to present a more general introduc-
tion that is not driven by intricacies of the particular programming language utilized. We
also believe that it is easier for students to follow the motivation of the introduction, and that
it makes much more interesting reading.
As a result of this approach, it is less straightforward to use the book as a reference book.
Introductory textbooks and reference books have different, partly competing, goals. To a

A01_BARN7367_06_SE_FM.indd 21 10/03/16 4:08 pm

xxii | Preface

certain extent a book can try to be both, but compromises have to be made at certain points.
Our book is clearly designed as a textbook, and wherever a conflict occurred, the textbook
style took precedence over its use as a reference book.
We have, however, provided support for use as a reference book by listing the Java con-
structs introduced in each chapter in the chapter introduction.

Chapter sequence
Chapter 1 deals with the most fundamental concepts of object orientation: objects, classes,
and methods. It gives a solid, hands-on introduction to these concepts without going into the
details of Java syntax. We briefly introduce the concept of abstraction. This will be a thread
that runs through many chapters. Chapter 1 also gives a first look at some source code.
We do this by using an example of graphical shapes that can be interactively drawn, and a
 second example of a simple laboratory class enrollment system.
Chapter 2 opens up class definitions and investigates how Java source code is written to cre-
ate behavior of objects. We discuss how to define fields and implement methods, and point
out the crucial role of the constructor in setting up an object’s state as embodied in its fields.
Here, we also introduce the first types of statement. The main example is an implementation
of a ticket machine. We also investigate the laboratory class example from Chapter 1 a bit
further.
Chapter 3 then enlarges the picture to discuss interaction of multiple objects. We see how
objects can collaborate by invoking each other’s methods to perform a common task. We
also discuss how one object can create other objects. A digital alarm clock display is dis-
cussed that uses two number display objects to show hours and minutes. A version of the
project that includes a GUI picks up on a running theme of the book—that we often provide
additional code for the interested and able student to explore, without covering it in detail in
the text. As a second major example, we examine a simulation of an email system in which
messages can be sent between mail clients.
In Chapter 4 we continue by building more extensive structures of objects and pick up
again on the themes of abstraction and object interaction from the preceding chapters. Most
importantly, we start using collections of objects. We implement an organizer for music files
and an auction system to introduce collections. At the same time, we discuss iteration over
collections, and have a first look at the for-each and while loops. The first collection being
used is an ArrayList.
Chapter 5 presents the first advanced section (a section that can be skipped if time is short):
It is an introduction to functional programming constructs. The functional constructs pre-
sent an alternative to the imperative collection processing discussed in Chapter 4. The same
problems can be solved without these techniques, but functional constructs open some
more elegant ways to achieve our goals. This chapter gives an introduction to the functional
approach in general, and introduces a few of Java’s language constructs.
Chapter 6 deals with libraries and interfaces. We introduce the Java library and discuss some
important library classes. More importantly, we explain how to read and understand the
library documentation. The importance of writing documentation in software development

A01_BARN7367_06_SE_FM.indd 22 10/03/16 4:08 pm

Preface | xxiii

projects is discussed, and we end by practicing how to write suitable documentation for
our own classes. Random, Set, and Map are examples of classes that we encounter in this
 chapter. We implement an Eliza-like dialog system and a graphical simulation of a bouncing
ball to apply these classes.
Chapter 7 concentrates on one specific—but very special—type of collection: arrays.
Arrays processing and the associated types of loops are discussed in detail.
In Chapter 8 we discuss more formally the issues of dividing a problem domain into classes
for implementation. We introduce issues of good class design, including concepts such as
responsibility-driven design, coupling, cohesion, and refactoring. An interactive, text-based
adventure game (World of Zuul) is used for this discussion. We go through several iterations
of improving the internal class structure of the game and extending its functionality, and end
with a long list of proposals for extensions that may be done as student projects.
Chapter 9 deals with a whole group of issues connected to producing correct, understandable,
and maintainable classes. It covers issues ranging from writing clear code (including style and
commenting) to testing and debugging. Test strategies are introduced, including formalized
regression testing using JUnit, and a number of debugging methods are discussed in detail.
We use an example of an online shop and an implementation of an electronic calculator to
discuss these topics.
Chapters 10 and 11 introduce inheritance and polymorphism, with many of the related
detailed issues. We discuss a part of a social network to illustrate the concepts. Issues of code
 inheritance, subtyping, polymorphic method calls, and overriding are discussed in detail.
In Chapter 12 we implement a predator/prey simulation. This serves to discuss additional
abstraction mechanisms based on inheritance, namely interfaces and abstract classes.
Chapter 13 develops an image viewer and a graphical user interface for the music organizer
(first encountered in Chapter 4). Both examples serve to discuss how to build graphical user
interfaces (GUIs).
Chapter 14 then picks up the difficult issue of how to deal with errors. Several possible
 problems and solutions are discussed, and Java’s exception-handling mechanism is discussed
in detail. We extend and improve an address book application to illustrate the concepts.
Input/output is used as a case study where error-handling is an essential requirement.
Chapter 15 discusses in more detail the next level of abstraction: How to structure a vaguely
described problem into classes and methods. In previous chapters we have assumed that large
parts of the application structure already exist, and we have made improvements. Now it is
time to discuss how we can get started from a clean slate. This involves detailed discussion of
what the classes should be that implement our application, how they interact, and how respon-
sibilities should be distributed. We use Class/Responsibilities/Collaborators (CRC) cards to
approach this problem, while designing a cinema booking system.
In Chapter 16 we to bring everything together and integrate topics from the previous chapters
of the book. It is a complete case study, starting with the application design, through design
of the class interfaces, down to discussing many important functional and non-functional
characteristics and implementation details. Concepts discussed in earlier chapters (such as
reliability, data structures, class design, testing, and extendibility) are applied again in a new
context.

A01_BARN7367_06_SE_FM.indd 23 10/03/16 4:08 pm

xxiv | Preface

Supplements
VideoNotes: VideoNotes are Pearson’s new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate how to
solve problems from design through coding. VideoNotes allow for self-paced instruction
with easy navigation including the ability to select, play, rewind, fast-forward, and stop
within each VideoNote exercise.
VideoNotes are located at http://www.pearsonhighered.com/barnes_kolling.
Six months of prepaid access are included with the purchase of a new textbook. If the
access code has already been revealed, it may no longer be valid. If this is the case, you
can purchase a subscription by going to http://www.pearsonhighered.com/barnes_
kolling/ and following the on-screen instructions.
Book website: All projects used as discussion examples and exercises in this book are avail-
able for download on the book’s website, at http://www.bluej.org/objects-first/.
The website also provides links to download BlueJ, and other resources..
Companion website for students: The following resources are available to all readers of
this book at its Companion Website, located at http://www.pearsonhighered.com/
barnes_kolling:

 ■ Program style guide for all examples in the book

 ■ Links to further material of interest

 ■ Complete source code for all projects

Instructor resources: The following supplements are available to qualified instructors only:

 ■ Solutions to end-of-chapter exercises

 ■ PowerPoint slides

Visit the Pearson Instructor Resource Center at www.pearsonhighered.com/irc to register
for access or contact your local Pearson representative.

The Blueroom
Perhaps more important than the static web site resources is a very active community forum
that exists for instructors who teach with BlueJ and this book. It is called the Blueroom and
can be found at

http://blueroom.bluej.org

The Blueroom contains a resource collection with many teaching resources shared by other
teachers, as well as a discussion forum where instructors can ask questions, discuss issues,
and stay up-to-date with the latest developments. Many other teachers, as well as developers
of BlueJ and the authors of this book, can be contacted in the Blueroom.

A01_BARN7367_06_SE_FM.indd 24 10/03/16 4:08 pm

List of Projects Discussed
in Detail in This Book

Figures (Chapter 1)
Simple drawing with some geometrical shapes; illustrates creation of objects, method
 calling, and parameters.

House (Chapter 1)
An example using shape objects to draw a picture; introduces source code, Java syntax,
and compilation.

Lab-classes (Chapter 1, 2, 10)
A simple example with classes of students; illustrates objects, fields, and methods. Used
again in Chapter 10 to add inheritance.

Ticket-machine (Chapter 2)
A simulation of a ticket vending machine for train tickets; introduces more about fields,
constructors, accessor and mutator methods, parameters, and some simple statements.

Book-exercise (Chapter 2)
Storing details of a book. Reinforcing the constructs used in the ticket-machine example.

Clock-display (Chapter 3)
An implementation of a display for a digital clock; illustrates the concepts of abstraction,
modularization, and object interaction. Includes a version with an animated GUI.

Mail system (Chapter 3)
A simple simulation of an email system. Used to demonstrate object creation and interaction.

Music-organizer (Chapter 4, 11)
An implementation of an organizer for music tracks; used to introduce collections and loops.
Includes the ability to play MP3 files. A GUI is added in Chapter 11.

Auction (Chapter 4)
An auction system. More about collections and loops, this time with iterators.

A01_BARN7367_06_SE_FM.indd 25 10/03/16 4:08 pm

xxvi | List of Projects Discussed in Detail in This Book

Animal-monitoring (Chapter 5)
A system to monitor animal populations, e.g., in a national park. This is used to introduce
functional processing of collections.

Tech-support (Chapter 6, 14)
An implementation of an Eliza-like dialog program used to provide “technical support” to
customers; introduces use of library classes in general and some specific classes in particu-
lar; reading and writing of documentation.

Scribble (Chapter 6)
A shape-drawing program to support learning about classes from their interfaces.

Bouncing-balls (Chapter 6)
A graphical animation of bouncing balls; demonstrates interface/implementation separation
and simple graphics.

Weblog-analyzer (Chapter 7, 14)
A program to analyze web access log files; introduces arrays and for loops.

Automaton (Chapter 7)
A series of examples of a cellular automaton. Used to gain practice with array programming.

Brain (Chapter 7)
A version of Brian’s Brain, which we use to discuss two-dimensional arrays.

World-of-zuul (Chapter 8, 11)
A text-based, interactive adventure game. Highly extendable, makes a great open-ended
student project. Used here to discuss good class design, coupling, and cohesion. Used again
in Chapter 9 as an example for use of inheritance.

Online-shop (Chapter 9)
The early stages of an implementation of a part of an online shopping website, dealing with
user comments; used to discuss testing and debugging strategies.

Calculator (Chapter 9)
An implementation of a desk calculator. This example reinforces concepts introduced ear-
lier, and is used to discuss testing and debugging.

Bricks (Chapter 9)
A simple debugging exercise; models filling pallets with bricks for simple computations.

Network (Chapter 10, 11)
Part of a social network application. This project is discussed and then extended in great
detail to introduce the foundations of inheritance and polymorphism.

A01_BARN7367_06_SE_FM.indd 26 10/03/16 4:08 pm

List of Projects Discussed in Detail in This Book | xxvii

Foxes-and-rabbits (Chapter 12)
A classic predator–prey simulation; reinforces inheritance concepts and adds abstract
classes and interfaces.

Image-viewer (Chapter 13)
A simple image-viewing and -manipulation application. We concentrate mainly on building
the GUI.

Music-player (Chapter 13)
A GUI is added to the music-organizer project of Chapter 4 as another example of building
GUIs.

Address-book (Chapter 14)
An implementation of an address book with an optional GUI interface. Lookup is flexible:
entries can be searched by partial definition of name or phone number. This project makes
extensive use of exceptions.

Cinema-booking-system (Chapter 15)
A system to manage advance seat bookings in a cinema. This example is used in a discussion
of class discovery and application design. No code is provided, as the example represents
the development of an application from a blank sheet of paper.

Taxi-company (Chapter 16)
The taxi example is a combination of a booking system, management system, and simu-
lation. It is used as a case study to bring together many of the concepts and techniques
 discussed throughout the book.

A01_BARN7367_06_SE_FM.indd 27 10/03/16 4:08 pm

