A Practical Introduction Using Bluel

David J. Barnes and Michael Kélling

University of Kent

Sixth Edition

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

AOI_BARN7367_06_SE_FM.indd 1 @ 10/03/16 4:08 pm

Foreword Xiv

Preface XV

List of Projects Discussed in Detail in This Book XXV
Acknowledgments XXViii

Part 1 Foundations of Object Orientation 1
Chapter 1 Objects and Classes 3
1.1 Objects and classes 3

1.2 Creating objects 4

1.3 Calling methods 5
1.4 Parameters 6

1.5 Data types 7

1.6 Multiple instances 8

1.7 State 9

1.8 What is in an object? 10

1.9 Java code 11
1.10 Object interaction 12
1.11 Source code 13
1.12 Another example 15
1.13 Return values 15
1.14 Objects as parameters 16
1.15 Summary 17
Chapter 2 Understanding Class Definitions 21
2.1 Ticket machines 21
2.2 Examining a class definition 23
2.3 The class header 25
2.4 Fields, constructors, and methods 26
2.5 Parameters: receiving data 32
2.6 Assignment 34

AOI_BARN7367_06_SE_FM.indd 5 @ 10/03/16 4:08 pm

vi Contents
2.7 Methods
2.8 Accessor and mutator methods
2.9 Printing from methods
2.10 Method summary
2.11 Summary of the naive ticket machine
2.12 Reflecting on the design of the ticket machine
2.13 Making choices: the conditional statement
2.14 A further conditional-statement example
2.15 Scope highlighting
2.16 Local variables
2.17 Fields, parameters, and local variables
2.18 Summary of the better ticket machine
2.19 Self-review exercises
2.20 Reviewing a familiar example
2.21 Calling methods
2.22 Experimenting with expressions: the Code Pad
2.23 Summary
Chapter 3 Object Interaction
3.1 The clock example
3.2 Abstraction and modularization
3.3 Abstraction in software
3.4 Modularization in the clock example
3.5 Implementing the clock display
3.6 Class diagrams versus object diagrams
3.7 Primitive types and object types
3.8 The NumberDisplay class
3.9 The ClockDisplay class
3.10 Objects creating objects
3.11 Multiple constructors
3.12 Method calls
3.13 Another example of object interaction
3.14 Using a debugger
3.15 Method calling revisited
3.16 Summary
Chapter 4 Grouping Objects
4.1 Building on themes from Chapter 3
4.2 The collection abstraction

AO1_BARN7367_06_SE_FM.indd 6

35
36
39
42
42
43
45
47
48
50
51
53
53
55
57
59
61

67

67
68
69
69
70
71
72
72
80
83
84
84
88
92
96
97

101

101
102

10/03/16 4:08 pm

4.3
4.4
4.5
4.6
4.7
4.8
4.9
410
4.1
412
413
414
415

Chapter 5

5.1
5.2
5.3
54
5.5
5.6

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

AO1_BARN7367_06_SE_FM.indd 7

Contents

An organizer for music files

Using a library class

Object structures with collections
Generic classes

Numbering within collections

Playing the music files

Processing a whole collection
Indefinite iteration

Improving structure—the Track class
The Iterator type

Summary of the music-organizer project
Another example: an auction system
Summary

Functional Processing of Collections (Advanced)

An alternative look at themes from Chapter 4
Monitoring animal populations

A first look at lambdas

The forEach method of collections

Streams

Summary

More-Sophisticated Behavior

Documentation for library classes
The TechSupport system

Reading class documentation
Adding random behavior
Packages and import

Using maps for associations
Using sets

Dividing strings

Finishing the TechSupport system
Autoboxing and wrapper classes
Writing class documentation
Public versus private

Learning about classes from their interfaces
Class variables and constants
Class methods

Executing without BlueJ

vii

103
104
107
109
110
113
115
120
128
131
135
137
147

149

149
150
154
156
158
168

171

172
173
178
183
189
190
195
195
197
199
201
204
206
211
214
216

10/03/16 4:08 pm

viii Contents
6.17 Further advanced material
6.18 Summary
Chapter 7 Fixed-Size Collections—Arrays
7.1 Fixed-size collections
7.2 Arrays
7.3 Alog-file analyzer
7.4 The for loop
7.5 The automaton project
7.6 Arrays of more than one dimension (advanced)
7.7 Arrays and streams (advanced)
7.8 Summary
Chapter 8 Designing Classes
8.1 Introduction
8.2 The world-of-zuul game example
8.3 Introduction to coupling and cohesion
8.4 Code duplication
8.5 Making extensions
8.6 Coupling
8.7 Responsibility-driven design
8.8 Localizing change
8.9 Implicit coupling
8.10 Thinking ahead
8.11 Cohesion
8.12 Refactoring
8.13 Refactoring for language independence
8.14 Design guidelines
8.15 Summary
Chapter 9 Well-Behaved Objects
9.1 Introduction
9.2 Testing and debugging
9.3 Unit testing within BlueJ
9.4 Test automation
9.5 Refactoring to use with streams (advanced)
9.6 Debugging
9.7 Commenting and style
9.8 Manual walkthroughs

AO1_BARN7367_06_SE_FM.indd 8

216
220

223

223
224
224
230
236
244
251
252

255

256
257
259
260
263
266
270
273
274
277
278
282
286
291
292

295

295
296
297
304
311
312
314
315

10/03/16 4:08 pm

9.9
9.10
9.1
9.12
9.13
9.14

Part 2

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

Chapter 11

11.1
11.2
1.3
11.4
11.5
11.6
1.7
11.8
11.9
11.10
11.11
11.12

Chapter 12

121
12.2
12.3

AO1_BARN7367_06_SE_FM.indd 9

Contents

Print statements

Debuggers

Debugging streams (advanced)
Choosing a debugging strategy
Putting the techniques into practice
Summary

Application Structures
Improving Structure with Inheritance

The network example

Using inheritance

Inheritance hierarchies
Inheritance in Java

Network: adding other post types
Advantages of inheritance (so far)
Subtyping

The Object class

The collection hierarchy
Summary

More about Inheritance

The problem: network’s display method
Static type and dynamic type
Overriding

Dynamic method lookup

super call in methods

Method polymorphism

Object methods: toString

Object equality: equals and hashCode
Protected access

The instanceof operator

Another example of inheritance with overriding
Summary

Further Abstraction Techniques

Simulations
The foxes-and-rabbits simulation
Abstract classes

320
324
325
326
327
327

329
331

331
343
345
346
349
351
352
358
359
359

363

363
365
368
370
373
374
374
377
379
381
382
385

389

389
390
405

10/03/16 4:08 pm

X Contents
12.4 More abstract methods
12.5 Multiple inheritance
12.6 Interfaces
12.7 A further example of interfaces
12.8 The Class class
12.9 Abstract class or interface?
12.10 Event-driven simulations
12.11 Summary of inheritance
12.12 Summary
Chapter 13 Building Graphical User Interfaces
13.1 Introduction
13.2 Components, layout, and event handling
13.3 AWT and Swing
13.4 The ImageViewer example
13.5 ImageViewer 1.0: the first complete version
13.6 ImageViewer 2.0: improving program structure
13.7 ImageViewer 3.0: more interface components
13.8 Inner classes
13.9 Further extensions
13.10 Another example: MusicPlayer
13.11 Summary
Chapter 14 Handling Errors
14.1 The address-book project
14.2 Defensive programming
14.3 Server error reporting
14.4 Exception-throwing principles
14.5 Exception handling
14.6 Defining new exception classes
14.7 Using assertions
14.8 Error recovery and avoidance
14.9 File-based input/output
14.10 Summary
Chapter 15 Designing Applications
15.1 Analysis and design
15.2 Class design
15.3 Documentation

AO1_BARN7367_06_SE_FM.indd 10

412
414
417
425
427
427
428
429
430

433

433
434
435
435
447
461
467
471
476
478
481

483

484
488
491
495
501
508
510
513
516
527

529

529
536
538

10/03/16 4:08 pm

15.4
15.5
15.6
15.7
15.8

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6

Appendix A:

A
A.2
A.3
A4
A5
A.6
A7

Appendix B:
B.1
B.2
B.3
B.4
B.5

Appendix C:

CA1
C.2
C3

Appendix D:

D.1
D.2

AO1_BARN7367_06_SE_FM.indd 11

Cooperation
Prototyping

Software growth
Using design patterns
Summary

A Case Study

The case study
Analysis and design
Class design

lterative development
Another example
Taking things further

Working with a BlueJ Project

Installing BlueJ

Opening a project

The BlueJ debugger

Configuring Blue)J

Changing the interface language
Using local APl documentation
Changing the new class templates

Java Data Types
Primitive types

Casting of primitive types
Object types

Wrapper classes

Casting of object types

Operators

Arithmetic expressions
Boolean expressions
Short-circuit operators

Java Control Structures

Control structures
Selection statements

Contents

Xi

539
539
540
542
548

551

551
552
556
561
570
570

571

571
571
571
571
572
572
572

573

573
574
574
575
575

577

577
578
579

581

581
581

10/03/16 4:08 pm

Xii Contents
D.3 Loops
D.4 Exceptions
D.5 Assertions
Appendix E: Running Java without Bluel)
E.1 Executing without BlueJ
E.2 Creating executable .jar files
E.3 Developing without BlueJ
Appendix F: Using the Debugger
F.1 Breakpoints
F.2 The control buttons
F.3 The variable displays
F4 The Call Sequence display
F5 The Threads display
Appendix G: JUnit Unit-Testing Tools
G.1 Enabling unit-testing functionality
G.2 Creating a test class
G.3 Creating a test method
G.4 Test assertions
G.5 Running tests
G.6 Fixtures
Appendix H: Teamwork Tools
H.1 Server setup
H.2 Enabling teamwork functionality
H.3 Sharing a project
H.4 Using a shared project
H.5 Update and commit
H.6 More information
Appendix I: Javadoc
I.1 Documentation comments
.2 BlueJ support for javadoc
Appendix J: Program Style Guide
J.1 Naming
J.2 Layout

AO1_BARN7367_06_SE_FM.indd 12

583
585
587

589

589
591
591

593

594
594
595
596
596

597

597
597
597
598
598
598

599

599
599
599
599
600
600

601

601
603

605

605
605

10/03/16 4:08 pm

J.3
J4
J.5

Appendix K:

K.1
K.2
K.3
K.4
K.5
K.6

Index

AO1_BARN7367_06_SE_FM.indd 13

Contents

Documentation
Language-use restrictions
Code idioms

Important Library Classes

The java.lang package

The java.util package

The java.io and java.nio.file packages
The java.util.function package

The java.net package

Other important packages

Xiii

606
607
608

609

609
610
611
612
612
613

615

10/03/16 4:08 pm

Foreword

by James Gosling, creator of Java

Watching my daughter Kate and her middle-school classmates struggle through a Java
course using a commercial IDE was a painful experience. The sophistication of the tool
added significant complexity to the task of learning. I wish that I had understood earlier
what was happening. As it was, I wasn’t able to talk to the instructor about the problem until
it was too late. This is exactly the sort of situation for which Blue] is a perfect fit.

Bluel is an interactive development environment with a mission: it is designed to be used
by students who are learning how to program. It was designed by instructors who have
been in the classroom facing this problem every day. It’s been refreshing to talk to the
folks who developed BluelJ: they have a very clear idea of what their target is. Discussions
tended to focus more on what to leave out, than what to throw in. BluelJ is very clean and
very targeting.

Nonetheless, this book isn’t about Bluel. It is about programming.
In Java.

Over the past several years Java has become widely used in the teaching of programming.
This is for a number of reasons. One is that Java has many characteristics that make it easy
to teach: it has a relatively clean definition; extensive static analysis by the compiler informs
students of problems early on; and it has a very robust memory model that eliminates most
“mysterious” errors that arise when object boundaries or the type system are compromised.
Another is that Java has become commercially very important.

This book confronts head-on the hardest concept to teach: objects. It takes students from
their very first steps all the way through to some very sophisticated concepts.

It manages to solve one of the stickiest questions in writing a book about programming: how
to deal with the mechanics of actually typing in and running a program. Most books silently
skip over the issue, or touch it lightly, leaving the instructor with the burden of figuring out
how to relate the book’s material to the actual steps that students have to go through to solve
the exercises. Instead, this book assumes the use of BlueJ and is able to integrate the tasks of
understanding the concepts with the mechanics of how students can explore them.

I wish it had been around for my daughter last year. Maybe next year . . .

AOI_BARN7367_06_SE_FM.indd 14 @ 10/03/16 4:08 pm

Preface

New to the sixth edition

This is the sixth edition of this book, and—as always with a new edition—the content has
been adapted to the latest developments in object-oriented programs.

Many of the changes this time can, on the surface, be attributed to a new version of Java:
Java 8. This version was released in 2014 and is now very widely used in practice. In fact, it
is the fastest adoption of any new Java version ever released; so it is time also to change the
way we teach novice students.

The changes are, however, more than merely the addition of a few new language constructs.
The most significant new aspects in Java 8 center around new constructs to support a
(partial) functional programming style. And it is the growing popularity of functional
programming that is driving this change. The difference is much deeper, and much more
fundamental, than just adding new syntax. And it is the renaissance of the functional
ideas in modern programming generally—not only the existence of Java 8—that makes it
timely to cover these aspects in a modern edition of a programming textbook.

The ideas and techniques of functional programming, while fairly old and well known
in principle, have seen a marked boost of popularity in recent years, with new languages
being developed and selected functional techniques being incorporated into existing,
traditionally imperative languages. One of the primary reasons for this is the change in
computing hardware available, and—with it—the changing nature of problems we wish
to tackle.

Almost all programming platforms now are concurrent. Even mid-range laptops and mobile
phones now have processors with multiple cores, making parallel processing a real possibil-
ity on everyday devices. But, in practice this is not happening on a large scale.

Writing applications that make optimal use of concurrent processing and multiple proces-
sors is very, very difficult. Most applications available today do not exploit current hard-
ware to a degree approaching anything that is theoretically possible.

This is not going to change much: the opportunity (and challenge) of parallel hardware will
remain, and programming these devices with traditional imperative languages will not get
any easier.

This is where functional programming enters the picture.

AOI_BARN7367_06_SE_FM.indd 15 @ 10/03/16 4:08 pm

XVi Preface

With functional language constructs, it is possible to automate some concurrency very
efficiently. Programs can potentially make use of multiple cores without much effort on
the side of the programmer. Functional constructs have other advantages—more elegant
expression for certain problems and often clearer readability—but it is the ability to deal
with parallelism that will ensure that functional aspects of programming are going to stay
with us for a long time to come.

Every teacher who wants to prepare their students for the future should give them some
understanding of functional aspects as well. Without it, one will no longer be able to become
a master programmer. A novice certainly does not have to master all of functional program-
ming, but a basic understanding of what it is—and what we can achieve with it—is rapidly
becoming essential.

Exactly when functional techniques should be introduced is an interesting question. We
do not believe that there is a single right answer for this; various sequences are possible.
Functional programming could be covered as an advanced topic at the end of the traditional
corpus of this book, or it could be addressed when we first encounter the topics where it
is applicable, as an alternative to the imperative techniques. It could even be covered first.

An additional question is how to treat the traditional style of programming in those areas
where functional constructs are now available: should they be replaced, or do both need to
be covered?

For this book, we recognize that different teachers will have different constraints and
preferences. Therefore, we have designed a structure that—we hope—allows different
approaches, depending on the preference of the learner or teacher.

= We have not replaced the “old-style” techniques. We cover the new, functional approach
in addition to the existing material. Functional constructs in Java are most prominent
when working with collections of objects, and the mastering traditional approach—using
loops and explicit iteration—is still essential for any programmer. Not only are there
millions of lines of code out there that are written in this style—and will be continued
to be written in this style—but there are also specific cases where it is necessary to use
these techniques even if one generally favors the new functional constructs. Mastering
both is the goal.

m We present the new functional-construct-oriented material in the book where we discuss
the problems that these constructs address. For example, we address functional collection
processing as soon as we encounter collections.

m Chapters and sections covering this new material are, however, clearly marked as
“advanced,” and are structured in a manner that they can safely be skipped on first read-
ing (or left out altogether).

m The previous two points enable different approaches to studying this book: if time per-
mits, it can be read in the sequence it is presented, covering the full scope of material—
including functional approaches as alternatives to imperative ones—as the problems are
encountered which they address. If time is short, these advanced sections can be skipped,
and emphasis can be placed on a thorough grounding in imperative, object-oriented
programming. (We should emphasize that functional is not a contradiction to object-
oriented: whether the functional material is included in the study, or the course emphasis

AO1_BARN7367_06_SE_FM.indd 16 @ 10/03/16 4:08 pm

Preface Xvii

is largely on imperative techniques, every reader of this book will emerge with a good
understanding of object orientation!) Yet another way to approach the material is to skip
the advanced sections initially, and cover them as a separate unit at a later time. They
present alternative approaches to other constructs and can be covered independently.

We hope this makes clear that this book provides flexibility where readers want it, but also
guidance where a reader has no clear preference: just read it in the sequence it is written.

Apart from the major changes described so far, this edition also presents numerous minor
improvements. The overall structure, tone, and approach of the book is unchanged; it has
worked very well in the past, and there is no reason to deviate from it. However, we
continuously re-evaluate and seek to improve where we see opportunities. We now have
almost 15 years of continuous experience teaching with this book, and this is reflected in the
many minor improvements throughout.

This book is an introduction to object-oriented programming for beginners. The main focus
of the book is general object-oriented and programming concepts from a software engineer-
ing perspective.

While the first chapters are written for students with no programming experience, later
chapters are suitable for more advanced or professional programmers as well. In particular,
programmers with experience in a non-object-oriented language who wish to migrate their
skills into object orientation should also be able to benefit from the book.

We use two tools throughout the book to enable the concepts introduced to be put into prac-
tice: the Java programming language and the Java development environment Bluel.

Java

Java was chosen because of both its language design and its popularity. The Java programming
language itself provides a clean implementation of most of the important object-oriented
concepts, and serves well as an introductory teaching language. Its popularity ensures an
immense pool of support resources.

In any subject area, having a variety of sources of information available is very helpful,
for teachers and students alike. For Java in particular, countless books, tutorials, exercises,
compilers, environments, and quizzes already exist, in many different kinds and styles.
Many of them are online and many are available free of charge. The huge amount of high
quality support material makes Java an excellent choice as an introduction to object-oriented
programming.

With so much Java material already available, is there still room for more to be said about it?
We think there is, and the second tool we use is one of the reasons . . .

BluelJ

BlueJ deserves much comment. This book is unique in its completely integrated use of the
BluelJ environment.

Bluel is a Java development environment that is being developed and maintained by the
Computing Education Research Group at the University of Kent in Canterbury, UK,

AO1_BARN7367_06_SE_FM.indd 17 @ 10/03/16 4:08 pm

Xviii Preface

explicitly as an environment for teaching introductory object-oriented programming. It is
better suited to introductory teaching than other environments for a variety of reasons:

m The user interface is much simpler. Beginning students can typically use the BluelJ
environment in a competent manner after 20 minutes of introduction. From then on,
instruction can concentrate on the important concepts at hand—object orientation and
Java—and no time needs to be wasted talking about environments, file systems, class
paths, or DLL conflicts.

m The environment supports important teaching tools not available in other environments.
One of them is visualization of class structure. BlueJ automatically displays a UML-like
diagram representing the classes and relationships in a project. Visualizing these impor-
tant concepts is a great help to both teachers and students. It is hard to grasp the concept
of an object when all you ever see on the screen is lines of code! The diagram notation is
a simple subset of UML, tailored to the needs of beginning students. This makes it easy
to understand, but also allows migration to full UML in later courses.

m One of the most important strengths of the BlueJ environment is the user’s ability to
directly create objects of any class, and then to interact with their methods. This creates
the opportunity for direct experimentation with objects, with little overhead in the envi-
ronment. Students can almost “feel” what it means to create an object, call a method,
pass a parameter, or receive a return value. They can try out a method immediately after
it has been written, without the need to write test drivers. This facility is an invaluable
aid in understanding the underlying concepts and language details.

m BlueJ includes numerous other tools and characteristics that are specifically designed
for students of software development. Some are aimed at helping with understanding
fundamental concepts (such as the scope highlighting in the editor), some are designed
to introduce additional tools and techniques, such as integrated testing using JUnit, or
teamwork using a version control system, such as Subversion, once the students are
ready. Several of these features are unique to the BlueJ environment.

Bluel is a full Java environment. It is not a cut-down, simplified version of Java for teach-
ing. It runs on top of Oracle’s Java Development Kit, and makes use of the standard com-
piler and virtual machine. This ensures that it always conforms to the official and most
up-to-date Java specification.

The authors of this book have many years of teaching experience with the BlueJ environ-
ment (and many more years without it before that). We both have experienced how the
use of BlueJ has increased the involvement, understanding, and activity of students in our
courses. One of the authors is also the development lead of the BlueJ system.

Real objects first

One of the reasons for choosing BlueJ was that it allows an approach where teachers truly
deal with the important concepts first. “Objects first” has been a battle cry for many text-
book authors and teachers for some time. Unfortunately, the Java language does not make
this noble goal very easy. Numerous hurdles of syntax and detail have to be overcome before

AO1_BARN7367_06_SE_FM.indd 18 @ 10/03/16 4:08 pm

Preface Xix

the first experience with a living object arises. The minimal Java program to create and call
an object typically includes

m writing a class;

m writing a main method, including concepts such as static methods, parameters, and arrays
in the signature;

m a statement to create the object (“new”);

m an assignment to a variable;

m the variable declaration, including variable type;
= a method call, using dot notation;

m possibly a parameter list.

As a result, most textbooks typically either

= have to work their way through this forbidding list, and only reach objects somewhere
around the fourth chapter; or

= use a “Hello, world”-style program with a single static main method as the first example,
thus not creating any objects at all.

With Bluel, this is not a problem. A student can create an object and call its methods as
the very first activity! Because users can create and interact with objects directly, con-
cepts such as classes, objects, methods, and parameters can easily be discussed in a con-
crete manner before looking at the first line of Java syntax. Instead of explaining more
about this here, we suggest that the curious reader dip into Chapter 1—things will quickly
become clear then.

An iterative approach

Another important aspect of this book is that it follows an iterative style. In the computing
education community, a well-known educational design pattern exists that states that impor-
tant concepts should be taught early and often.! It is very tempting for textbook authors to
try and say everything about a topic at the point where it is introduced. For example, it is
common, when introducing types, to give a full list of built-in data types, or to discuss all
available kinds of loop when introducing the concept of a loop.

These two approaches conflict: we cannot concentrate on discussing important concepts
first, and at the same time provide complete coverage of all topics encountered. Our experi-
ence with textbooks is that much of the detail is initially distracting, and has the effect of
drowning the important points, thus making them harder to grasp.

! The “Early Bird” pattern, in J. Bergin: “Fourteen Pedagogical Patterns for Teaching Computer
Science,” Proceedings of the Fifth European Conference on Pattern Languages of Programs
(EuroPLop 2000), Irsee, Germany, July 2000.

AO1_BARN7367_06_SE_FM.indd 19 @ 10/03/16 4:08 pm

XX Preface

In this book we touch on all of the important topics several times, both within the same
chapter and across different chapters. Concepts are usually introduced at a level of detail
necessary for understanding and applying to the task at hand. They are revisited later in
a different context, and understanding deepens as the reader continues through the chap-
ters. This approach also helps to deal with the frequent occurrence of mutual dependencies
between concepts.

Some teachers may not be familiar with the iterative approach. Looking at the first few
chapters, teachers used to a more sequential introduction will be surprised about the number
of concepts touched on this early. It may seem like a steep learning curve.

It is important to understand that this is not the end of the story. Students are not expected
to understand everything about these concepts immediately. Instead, these fundamental
concepts will be revisited again and again throughout the book, allowing students to get
a deeper understanding over time. Since their knowledge level changes as they work their
way forward, revisiting important topics later allows them to gain a deeper understanding
overall.

We have tried this approach with students many times. Sometimes students have fewer
problems dealing with it than some long-time teachers. And remember: a steep learning
curve is not a problem as long as you ensure that your students can climb it!

No complete language coverage

Related to our iterative approach is the decision not to try to provide complete coverage of
the Java language within the book.

The main focus of this book is to convey object-oriented programming principles in general,
not Java language details in particular. Students studying with this book may be working as
software professionals for the next 30 or 40 years of their life—it is a fairly safe bet that the
majority of their work will not be in Java. Every serious textbook must attempt to prepare
them for something more fundamental than the language flavor of the day.

On the other hand, many Java details are essential to actually doing practical programming
work. In this book we cover Java constructs in as much detail as is necessary to illustrate the
concepts at hand and implement the practical work. Some constructs specific to Java have
been deliberately left out of the discussion.

We are aware that some instructors will choose to cover some topics that we do not discuss in
detail. However, instead of trying to cover every possible topic ourselves (and thus blowing
the size of this book out to 1500 pages), we deal with it using sooks. Hooks are pointers,
often in the form of questions that raise the topic and give references to an appendix or
outside material. These hooks ensure that a relevant topic is brought up at an appropriate
time, and leave it up to the reader or the teacher to decide to what level of detail that topic
should be covered. Thus, hooks serve as a reminder of the existence of the topic, and as a
placeholder indicating a point in the sequence where discussion can be inserted.

Individual teachers can decide to use the book as it is, following our suggested sequence, or
to branch out into sidetracks suggested by the hooks in the text.

AO1_BARN7367_06_SE_FM.indd 20 @ 10/03/16 4:08 pm

Preface XXi

Chapters also often include several questions suggesting discussion material related to the
topic, but not discussed in this book. We fully expect teachers to discuss some of these ques-
tions in class, or students to research the answers as homework exercises.

Project-driven approach

The introduction of material in the book is project driven. The book discusses numerous
programming projects and provides many exercises. Instead of introducing a new construct
and then providing an exercise to apply this construct to solve a task, we first provide a
goal and a problem. Analyzing the problem at hand determines what kinds of solutions we
need. As a consequence, language constructs are introduced as they are needed to solve the
problems before us.

Early chapters provide at least two discussion examples. These are projects that are dis-
cussed in detail to illustrate the important concepts of each chapter. Using two very different
examples supports the iterative approach: each concept is revisited in a different context
after it is introduced.

In designing this book we have tried to use a lot of different example projects. This
will hopefully serve to capture the reader’s interest, and also illustrate the variety of
different contexts in which the concepts can be applied. We hope that our projects serve
to give teachers good starting points and many ideas for a wide variety of interesting
assignments.

The implementation for all our projects is written very carefully, so that many peripheral
issues may be studied by reading the projects’ source code. We are strong believers in learn-
ing by reading and imitating good examples. For this to work, however, it’s important that
the examples are well written and worth imitating. We have tried to create great examples.

All projects are designed as open-ended problems. While one or more versions of each
problem are discussed in detail in the book, the projects are designed so that further
extensions and improvements can be done as student projects. Complete source code for all
projects is included. A list of projects discussed in this book is provided on page xxv.

Concept sequence rather than language constructs

One other aspect that distinguishes this book from many others is that it is structured along
fundamental software development tasks, not necessarily according to the particular Java
language constructs. One indicator of this is the chapter headings. In this book you will
not find traditional chapter titles such as “Primitive data types” or “Control structures.”
Structuring by fundamental development tasks allows us to present a more general introduc-
tion that is not driven by intricacies of the particular programming language utilized. We
also believe that it is easier for students to follow the motivation of the introduction, and that
it makes much more interesting reading.

As a result of this approach, it is less straightforward to use the book as a reference book.
Introductory textbooks and reference books have different, partly competing, goals. To a

AO1_BARN7367_06_SE_FM.indd 21 @ 10/03/16 4:08 pm

XXii Preface

certain extent a book can try to be both, but compromises have to be made at certain points.
Our book is clearly designed as a textbook, and wherever a conflict occurred, the textbook
style took precedence over its use as a reference book.

We have, however, provided support for use as a reference book by listing the Java con-
structs introduced in each chapter in the chapter introduction.

Chapter sequence

Chapter 1 deals with the most fundamental concepts of object orientation: objects, classes,
and methods. It gives a solid, hands-on introduction to these concepts without going into the
details of Java syntax. We briefly introduce the concept of abstraction. This will be a thread
that runs through many chapters. Chapter 1 also gives a first look at some source code.
We do this by using an example of graphical shapes that can be interactively drawn, and a
second example of a simple laboratory class enrollment system.

Chapter 2 opens up class definitions and investigates how Java source code is written to cre-
ate behavior of objects. We discuss how to define fields and implement methods, and point
out the crucial role of the constructor in setting up an object’s state as embodied in its fields.
Here, we also introduce the first types of statement. The main example is an implementation
of a ticket machine. We also investigate the laboratory class example from Chapter 1 a bit
further.

Chapter 3 then enlarges the picture to discuss interaction of multiple objects. We see how
objects can collaborate by invoking each other’s methods to perform a common task. We
also discuss how one object can create other objects. A digital alarm clock display is dis-
cussed that uses two number display objects to show hours and minutes. A version of the
project that includes a GUI picks up on a running theme of the book—that we often provide
additional code for the interested and able student to explore, without covering it in detail in
the text. As a second major example, we examine a simulation of an email system in which
messages can be sent between mail clients.

In Chapter 4 we continue by building more extensive structures of objects and pick up
again on the themes of abstraction and object interaction from the preceding chapters. Most
importantly, we start using collections of objects. We implement an organizer for music files
and an auction system to introduce collections. At the same time, we discuss iteration over
collections, and have a first look at the for-each and while loops. The first collection being
used is an ArrayList.

Chapter 5 presents the first advanced section (a section that can be skipped if time is short):
It is an introduction to functional programming constructs. The functional constructs pre-
sent an alternative to the imperative collection processing discussed in Chapter 4. The same
problems can be solved without these techniques, but functional constructs open some
more elegant ways to achieve our goals. This chapter gives an introduction to the functional
approach in general, and introduces a few of Java’s language constructs.

Chapter 6 deals with libraries and interfaces. We introduce the Java library and discuss some
important library classes. More importantly, we explain how to read and understand the
library documentation. The importance of writing documentation in software development

AO1_BARN7367_06_SE_FM.indd 22 @ 10/03/16 4:08 pm

Preface XXiii

projects is discussed, and we end by practicing how to write suitable documentation for
our own classes. Random, Set, and Map are examples of classes that we encounter in this
chapter. We implement an Eliza-like dialog system and a graphical simulation of a bouncing
ball to apply these classes.

Chapter 7 concentrates on one specific—but very special—type of collection: arrays.
Arrays processing and the associated types of loops are discussed in detail.

In Chapter 8 we discuss more formally the issues of dividing a problem domain into classes
for implementation. We introduce issues of good class design, including concepts such as
responsibility-driven design, coupling, cohesion, and refactoring. An interactive, text-based
adventure game (World of Zuul) is used for this discussion. We go through several iterations
of improving the internal class structure of the game and extending its functionality, and end
with a long list of proposals for extensions that may be done as student projects.

Chapter 9 deals with a whole group of issues connected to producing correct, understandable,
and maintainable classes. It covers issues ranging from writing clear code (including style and
commenting) to testing and debugging. Test strategies are introduced, including formalized
regression testing using JUnit, and a number of debugging methods are discussed in detail.
We use an example of an online shop and an implementation of an electronic calculator to
discuss these topics.

Chapters 10 and 11 introduce inheritance and polymorphism, with many of the related
detailed issues. We discuss a part of a social network to illustrate the concepts. Issues of code
inheritance, subtyping, polymorphic method calls, and overriding are discussed in detail.

In Chapter 12 we implement a predator/prey simulation. This serves to discuss additional
abstraction mechanisms based on inheritance, namely interfaces and abstract classes.

Chapter 13 develops an image viewer and a graphical user interface for the music organizer
(first encountered in Chapter 4). Both examples serve to discuss how to build graphical user
interfaces (GUISs).

Chapter 14 then picks up the difficult issue of how to deal with errors. Several possible
problems and solutions are discussed, and Java’s exception-handling mechanism is discussed
in detail. We extend and improve an address book application to illustrate the concepts.
Input/output is used as a case study where error-handling is an essential requirement.

Chapter 15 discusses in more detail the next level of abstraction: How to structure a vaguely
described problem into classes and methods. In previous chapters we have assumed that large
parts of the application structure already exist, and we have made improvements. Now it is
time to discuss how we can get started from a clean slate. This involves detailed discussion of
what the classes should be that implement our application, how they interact, and how respon-
sibilities should be distributed. We use Class/Responsibilities/Collaborators (CRC) cards to
approach this problem, while designing a cinema booking system.

In Chapter 16 we to bring everything together and integrate topics from the previous chapters
of the book. It is a complete case study, starting with the application design, through design
of the class interfaces, down to discussing many important functional and non-functional
characteristics and implementation details. Concepts discussed in earlier chapters (such as
reliability, data structures, class design, testing, and extendibility) are applied again in a new
context.

AO1_BARN7367_06_SE_FM.indd 23 @ 10/03/16 4:08 pm

XXiv ‘ Preface

Supplements

VideoNotes: VideoNotes are Pearson’s new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate how to
solve problems from design through coding. VideoNotes allow for self-paced instruction
with easy navigation including the ability to select, play, rewind, fast-forward, and stop
within each VideoNote exercise.

VideoNotes are located at http://www.pearsonhighered.com/barnes_kol1ing.
Six months of prepaid access are included with the purchase of a new textbook. If the
access code has already been revealed, it may no longer be valid. If this is the case, you
can purchase a subscription by going to http: //www.pearsonhighered.com/barnes_
ko111ing/ and following the on-screen instructions.

Book website: All projects used as discussion examples and exercises in this book are avail-
able for download on the book’s website, at http: //www.bluej.org/objects-first/.
The website also provides links to download BluelJ, and other resources..

Companion website for students: The following resources are available to all readers of
this book at its Companion Website, located at http://www.pearsonhighered.com/
barnes_kol11ing:

m Program style guide for all examples in the book
m Links to further material of interest
m Complete source code for all projects

Instructor resources: The following supplements are available to qualified instructors only:

= Solutions to end-of-chapter exercises
= PowerPoint slides

Visit the Pearson Instructor Resource Center at www.pearsonhighered.com/irc to register
for access or contact your local Pearson representative.

The Blueroom

Perhaps more important than the static web site resources is a very active community forum
that exists for instructors who teach with BluelJ and this book. It is called the Blueroom and
can be found at

http://blueroom.bluej.org

The Blueroom contains a resource collection with many teaching resources shared by other
teachers, as well as a discussion forum where instructors can ask questions, discuss issues,
and stay up-to-date with the latest developments. Many other teachers, as well as developers
of BluelJ and the authors of this book, can be contacted in the Blueroom.

AO1_BARN7367_06_SE_FM.indd 24 @ 10/03/16 4:08 pm

AO1_BARN7367_06_SE_FM.indd 25

Figures (Chapter 1)

Simple drawing with some geometrical shapes; illustrates creation of objects, method
calling, and parameters.

House (Chapter 1)

An example using shape objects to draw a picture; introduces source code, Java syntax,
and compilation.

Lab-classes (Chapter 1, 2, 10)

A simple example with classes of students; illustrates objects, fields, and methods. Used
again in Chapter 10 to add inheritance.

Ticket-machine (Chapter 2)

A simulation of a ticket vending machine for train tickets; introduces more about fields,
constructors, accessor and mutator methods, parameters, and some simple statements.

Book-exercise (Chapter 2)
Storing details of a book. Reinforcing the constructs used in the ticket-machine example.

Clock-display (Chapter 3)
An implementation of a display for a digital clock; illustrates the concepts of abstraction,
modularization, and object interaction. Includes a version with an animated GUI.

Mail system (Chapter 3)
A simple simulation of an email system. Used to demonstrate object creation and interaction.

Music-organizer (Chapter 4, 11)

An implementation of an organizer for music tracks; used to introduce collections and loops.
Includes the ability to play MP3 files. A GUI is added in Chapter 11.

Auction (Chapter 4)
An auction system. More about collections and loops, this time with iterators.

@ 10/03/16 4:08 pm

XXVi List of Projects Discussed in Detail in This Book

Animal-monitoring (Chapter 5)
A system to monitor animal populations, e.g., in a national park. This is used to introduce
functional processing of collections.

Tech-support (Chapter 6, 14)

An implementation of an Eliza-like dialog program used to provide “technical support” to
customers; introduces use of library classes in general and some specific classes in particu-
lar; reading and writing of documentation.

Scribble (Chapter 6)
A shape-drawing program to support learning about classes from their interfaces.

Bouncing-balls (Chapter 6)

A graphical animation of bouncing balls; demonstrates interface/implementation separation
and simple graphics.

Weblog-analyzer (Chapter 7, 14)

A program to analyze web access log files; introduces arrays and for loops.

Automaton (Chapter 7)

A series of examples of a cellular automaton. Used to gain practice with array programming.

Brain (Chapter 7)

A version of Brian’s Brain, which we use to discuss two-dimensional arrays.

World-of-zuul (Chapter 8, 11)

A text-based, interactive adventure game. Highly extendable, makes a great open-ended
student project. Used here to discuss good class design, coupling, and cohesion. Used again
in Chapter 9 as an example for use of inheritance.

Online-shop (Chapter 9)

The early stages of an implementation of a part of an online shopping website, dealing with
user comments; used to discuss testing and debugging strategies.

Calculator (Chapter 9)

An implementation of a desk calculator. This example reinforces concepts introduced ear-
lier, and is used to discuss testing and debugging.

Bricks (Chapter 9)

A simple debugging exercise; models filling pallets with bricks for simple computations.

Network (Chapter 10, 11)

Part of a social network application. This project is discussed and then extended in great
detail to introduce the foundations of inheritance and polymorphism.

AO1_BARN7367_06_SE_FM.indd 26 @ 10/03/16 4:08 pm

List of Projects Discussed in Detail in This Book xxvii

Foxes-and-rabbits (Chapter 12)

A classic predator—prey simulation; reinforces inheritance concepts and adds abstract
classes and interfaces.

Image-viewer (Chapter 13)
A simple image-viewing and -manipulation application. We concentrate mainly on building
the GUI.

Music-player (Chapter 13)
A GUI is added to the music-organizer project of Chapter 4 as another example of building
GUIs.

Address-book (Chapter 14)

An implementation of an address book with an optional GUI interface. Lookup is flexible:
entries can be searched by partial definition of name or phone number. This project makes
extensive use of exceptions.

Cinema-booking-system (Chapter 15)

A system to manage advance seat bookings in a cinema. This example is used in a discussion
of class discovery and application design. No code is provided, as the example represents
the development of an application from a blank sheet of paper.

Taxi-company (Chapter 16)

The taxi example is a combination of a booking system, management system, and simu-
lation. It is used as a case study to bring together many of the concepts and techniques
discussed throughout the book.

AO1_BARN7367_06_SE_FM.indd 27 @ 10/03/16 4:08 pm

