

The BlueJ Code Pad
This document describes the BlueJ code pad component.

The BlueJ code pad allows quick and easy evaluation of arbitrary snippets of Java code
(expressions and statements). Thus, the code pad can be used to investigate details of
Java semantics and to illustrate and experiment with Java syntax.

1 Showing the code pad

Summary: To start using the code pad, select Show Code Pad from the View menu.

The code pad is not shown by default. To show it, use the Show Code Pad item from the
View menu. The main window will now include the code pad interface at the lower right,
next to the object bench (Figure 1). Both the horizontal and vertical boundaries of the
code pad and object bench can be adjusted to change their sizes.

The code pad area can now be used to enter expressions or statements. On pressing
Enter, each line will be evaluated and a result may be displayed.

Figure 1: The main window with code pad shown

2 Simple expression evaluation

Summary: To evaluate Java expressions, just type them into the code pad.

The code pad can be used to evaluate simple expressions. Try entering, for example:

4 + 45

"hello".length()

Math.max(33, 4)

(int) 33.7

javax.swing.JOptionPane.showInputDialog(null, "Name:")

Expressions can refer to standard Java values and objects, as well as classes from the
current project. The code pad will display the result value, followed by its type (in
parenthesis), or an error message if the expression is incorrect.

You can also use the objects you have on the object bench. Try the following: place an
object of class student onto the object bench (using the class popup menu as described
earlier). Name it student1.

In the code pad, you can now type

student1.getName()

Similarly, you can refer to all available methods from your project classes.

3 Receiving objects

Summary: To transfer objects from the code pad to the object bench, drag the small
object icon.

Some expression results are objects, rather than simple values. In this case, the result is
shown as <object reference>, followed by the type of the object, and a small object icon is
painted next to the result line (Figure 2).

Figure 2: An object as a result of a code pad expression

If the result is a string, the string value will be displayed as the result, but you will also
see the small object icon (since strings are objects).

Some expressions you could try to create objects are

new Student()

"marmelade".substring(3,8)

new java.util.Random()

"hello" + "world"

The small object icon can now be used to continue working with the resulting object. You
can point to the icon and drag it onto the object bench (Figure 3). This will place the
object onto the bench, where it will be available for further calls to its methods, either via
its popup menu or via the code pad.

Figure 3: Dragging the object to the object bench

4 Inspecting objects

Summary: To inspect result objects in the code pad, double-click the small object icon.

If you want to inspect an object that was returned as a result from a code pad expression,
you can do this without placing it onto the object bench: you can just double-click the
object's icon to open the usual object inspector.

5 Executing statements

Summary: Statements that are typed into the code pad are executed.

You can also use the code pad to execute statements (that is: Java instructions that do
not return a value). Try these, for example:

System.out.println("Gurkensalat");

System.out.println(new java.util.Random().nextInt(10));

Statements are correctly evaluated and executed with or without semicolons at the end.

6 Multi-line statements and sequences of statements

Summary: Use shift-Enter at the end of a line to enter multi-line statements.

You can enter sequences of statements or statements spanning multiple lines by using
shift-Enter at the end of the input line. Using shift-enter will move the cursor to the start
of the next line, but not (yet) execute the input. At the end of the last input line type
Enter to evaluate all lines together. Try, for example, a for loop:

for (int i=0; i<5; i++) {
 System.out.println("number: " + i);
}

7 Working with variables

Summary: Local variables can be used in single, multi-line statements. The names of
objects on the object bench serve as instance fields.

Variables – instance fields and local variables – can be used in the code pad in restricted
ways.

You can declare local variables in the code pad, but this is only useful as part of multi-
line statement sequences, since variables are discarded between separate inputs. For

example: You can enter the following block as a single, multi-line input, and it will work
as expected:

int sum;
sum = 0;
for (int i=0; i<100; i++) {
 sum += i;
}
System.out.println("The sum is: " + sum);

Entering the same sequence as separate input statements, however, will fail, since the
local variable sum is not remembered between inputs.

You can think of the input you type as the text within a method body. All code that is
legal to write in the body of a Java method is also legal in the code pad. However, every
text input you type forms the part of a different method, so you cannot refer from one
input line to a variable declared in another.

You can think of variables on the object bench as instance fields. You cannot define any
new instance fields from within a method body (or from with the code pad), but you can
refer to the instance fields and make calls to the objects held in them.

You can create a new instance field by dragging an object from the code pad to the object
bench.

8 Command history

Summary: Use up-arrow and down-arrow keys to make use of the input history.

The code pad keeps a history of your previously used inputs. Using the up or down arrow
keys, you can easily recall previous input lines, which can be edited before being reused.

