
Unit Testing in BlueJ

Version 1.0
for BlueJ Version 1.3.0

Michael Kölling
Mærsk Institute

University of Southern Denmark

Copyright © M. Kölling

Unit testing in BlueJ

Copyright © M. Kölling 2

1 INTRODUCTION . 3

2 ENABLING UNIT TESTING FUNCTIONALITY. 5

3 CREATING TEST CLASSES . 6

4 CREATING TEST METHODS . 8

5 RUNNING TESTS. 1 0

6 INTERPRETING TEST RESULTS . 1 1

7 WHAT IS A FIXTURE? . 1 2

8 CREATING AND USING TEST FIXTURES . 1 3

9 WRITING TEST METHODS BY HAND. 1 4

1 0 WRITING TESTS FIRST . 1 5

1 1 MULTI-CLASS TESTING . 1 6

1 2 JUST THE SUMMARIES . 1 7

Unit testing in BlueJ

Copyright © M. Kölling 3

1 Introduction

Summary: BlueJ provides regression testing functionality by integrating JUnit.

1.1 About this tutorial – scope and audience

This tutorial introduces the unit testing functionality in the BlueJ environment. We
assume that you are already familiar with BlueJ’s general functionality. If not, read ‘The
BlueJ Tutorial’ first. (You can get that tutorial, and an electronic version of this one, at
http://www.bluej.org/doc/documentation.html).
We also assume that you are somewhat familiar with the idea of unit testing (or at least
software testing in general). We give a few pointers in the next section.

1.2 What is unit testing?

The term unit testing refers to the individual testing of separate units of a software
system. In object-oriented systems, these units typically are classes and methods. Thus,
in our context, unit testing refers to the individual testing of methods and classes in
BlueJ.
This tutorial discusses BlueJ’s tools for systematic unit testing. If you are familiar with
BlueJ’s interaction features, then you know that it is easy in BlueJ to test individual
methods interactively. We refer to this as ad-hoc testing.
Ad-hoc testing is useful, but not good enough for systematic testing. The unit testing
features in BlueJ give you the tools to record and replay tests, so that unit tests can
easily be repeated later (typically after a change in the system), so that the developer can
gain some confidence that recent changes have not broken existing functionality. This is
known as regression testing.
The concepts of unit testing and regression testing are old, but their popularity was
greatly increased recently with the publication of the eXtreme programming
methodology1 and a unit testing tool for Java, JUnit.
JUnit is a regression testing framework written by Erich Gamma and Kent Beck. You
can find the software and a lot of information about it at http://www.junit.org .

1 To find out what eXtreme programming is, have a look, for example, at “Extreme Programming
Explained: Embrace Change”, Kent Beck, Addison Wesley, 1999. There are many other books
available. A good online summary is at http://www.xprogramming.com/xpmag/whatisxp.htm

Unit testing in BlueJ

Copyright © M. Kölling 4

1.3 Unit testing in BlueJ

The systematic testing tools in BlueJ are based on JUnit. Thus, some knowledge about
using JUnit helps in understanding unit testing in BlueJ. We recommend reading an
article about this (maybe not right now, but some time later). Many such articles exist,
and the JUnit web site is a good starting point to find them.
Unit testing in BlueJ combines BlueJ’s interactive testing functionality with the
regression testing of JUnit. Both testing methods are fully supported. Additionally, new
functionality resulting from the combination of the two systems is available: interactive
test sequences can be recorded, for example, to automatically create JUnit test methods
for later regression testing. Examples are given later in this document.
The unit testing functionality in BlueJ was designed and implemented by Andrew
Patterson (Monash University) as part of his PhD work.

Unit testing in BlueJ

Copyright © M. Kölling 5

2 Enabling unit testing functionality

Summary: Testing tools can be made visible with a switch in the preferences.

The explicit testing support in BlueJ is initially disabled. To use the testing tools select
Tools – Preferences... and select the checkbox labelled Show testing tools.
Enabling this functionality adds three elements to the interface: some buttons and a
“recording” indicator in the main window’s tool bar, a Show Test Results item in the
View menu, and a Create Test Class item in the popup menu of compiled classes.

Unit testing in BlueJ

Copyright © M. Kölling 6

3 Creating test classes

Summary: Create a test class by selecting Create Test Class from the class popup menu.

The first step to setting up testing of a class or method in BlueJ is to create a test class.
A test class is a class associated with a project class (which we will call the reference
class). The test class contains tests for methods for the reference class.
For the examples in this tutorial, we use the people project, which is distributed with
BlueJ as one of the examples in the examples directory. You may like to open it on your
system to try out things as you read this.
You can create a test class by right-clicking (MacOS: control-clicking) a compiled class
and selecting the Create Test Class item from the popup menu. The test class is
automatically named by adding a “Test” suffix to the name of the reference class. For
example, if the reference class name is “Student”, the test class will be named
“StudentTest”.
Test classes are shown in the diagram marked with a <<unit test>> tag attached to the
reference class. They also have a different colour (Figure 1). Dragging the reference
class will keep the test class attached.

Figure 1: A reference class with an associated test class

Test classes are treated in a specialised way by the environment. They have the usual
class functions (such as Open Editor, Compile, Remove), but also some test specific
functions (Figure 2). The test class must be compiled to see this menu.

Unit testing in BlueJ

Copyright © M. Kölling 7

Figure 2: The popup menu of a test class

Creating the test class in itself does not create any tests, but it gives us the option of
creating tests now. The test class is used to hold the test we will create.

Unit testing in BlueJ

Copyright © M. Kölling 8

4 Creating test methods

Summary: Create a test method by selecting Create Test Method... from the test class's
menu.

Student objects have two methods, setName and getName (inherited from Person), to
set and retrieve the name of the student. Assume we want to create a test to check that
these methods work as expected.
We start by selecting Create Test Method... from the StudentTest class. A test method
implements a single test (that is: the testing of one bit of functionality).
After selecting this function, you will be prompted for a name for this test. Test names
always start with the prefix “test” - if your chosen name does not start with “test” this
will be automatically added. Thus, typing “testName” or “name” will both result in
creating a test method called “testName”.
After typing the name and clicking OK, all interaction will be recorded as part of this
test. The ‘recording’ indicator is on, and the buttons to end or cancel this test recording
are enabled (Figure 3).

Figure 3: Test buttons during test recording

To record the test in this example, do the following:
• Create a Student object, using the constructor without parameters.
• Call the setName(newName) method (inherited from Person) and set the

name to “Fred”.
• Call the getName() method.

After calling the getName method, you will see the result dialog. While we are
recording tests, the result dialog includes a part that lets us specify assertions on the
result (Figure 4). We can use this assertion facility to specify the expected outcome of
the test. In our case, we expect the result of the method call to be equal to the string
"Fred", so we can specify this as an assertion (Figure 4).

Unit testing in BlueJ

Copyright © M. Kölling 9

Figure 4: A result dialog with assertion options

Several different kinds of assertions are available from the popup menu, including tests
for equality, null, and not null.
This concludes our test case, so we can now click 'End' under the test recording indicator
to end the recording of the test.
Ending the test results in a test method being added to the test class. This test method is
then available for running.
We can use the recording 'Cancel' button to end the recording and discarding it.
In a similar way to this example, we can record any number of tests. Each class in the
project can have its own test class, and each test class can have any number of tests.
Each test recording can consist of an arbitrary number of actions, including arbitrary
creation of instances and any number of assertions.

Unit testing in BlueJ

Copyright © M. Kölling 10

5 Running tests

Summary: Run all tests by clicking the Run Tests button. Run individual tests by
selecting them from the test class's menu.

Once tests have been recorded, they can be executed. Test classes are Java classes just
like the reference classes, so they too must be compiled before execution.
BlueJ automatically attempts to compile test classes after each test recording. If the
assertion expression contains an error, or if the test class was edited by hand, it can be
necessary to compile the test class explicitly before it can be used.
We can now right-click the test class and see the test we have just recorded in the class's
popup menu. Figure 5 shown an example with our testName test method from above
and a second test called testStudentID.

Figure 5: Test class menu with two defined test methods

Selecting a test from the menu executes that test individually. Selecting the Test All option
from the test class's menu runs all tests defined in that class.
When a test is run individually, one of two things will happen: if the test is successful
(the assertions in the test hold) a brief note indicating success is shown in the project
window's status bar at the bottom of the window. If the test fails (an assertion fails or
any other problem occurs) a test result window is displayed presenting details about the
test run (Figure 6).
If all tests are run, the test result window is always displayed to show the outcome of the
tests.
You can also use the Run Tests button above the test recording indicator in the main
window. Activating this button will run all tests in all test classes in the package. This is
the standard way to execute a full test suit for the package.

Unit testing in BlueJ

Copyright © M. Kölling 11

6 Interpreting test results

Summary: The test result windows shows a summary of test runs and can display
failure details.

Figure 6: The test result window

When tests have been executed, the Test Result window displays a summary of the
testing outcomes (Figure 6). The top pane of that window shows a list of all executed
test, tagged with an icon indicating their success or failure. A green tick mark indicates a
successful test, a grey cross indicates a test failure and a red cross marks an error.
The number of run tests, errors, and failures is also summarised in the middle section of
the window.
A test has a failure (grey cross) if one of its assertions does not hold. For example, the
test assertion may specify that a particular method result should not be null, but in this
case it was.
A test has an error, if its execution resulted in any other kind of error, such as an
unexpected exception being thrown.
For any unsuccessful test, details about its failure can be displayed by selecting the test
in the list. The lower pane in the window then displays detail information about this
failure or error.
The bar in the middle of the test window is the main summary of the test run: if it
appears green, all is well - all tests have been successful. If it is red, there is a problem -
at least one test has failed.
Note that on MacOS this bar does not change colour.

Unit testing in BlueJ

Copyright © M. Kölling 12

7 What is a fixture?

Summary: A test fixture is a prepared set of objects used as a starting point for tests.

Sometimes a test needs some objects set up before the actual test can start. For example,
for several of the tests we would want for the Database class in the 'people' project, we
need a Database object, a Student object and a Staff object. In addition, we might
want specific state (such as a set name and age) for the student and staff member.
We could start every individual test by creating the necessary objects and putting them
into an appropriate state for doing our test. But as tests get more sophisticated, this can
become tedious, and we can use a better mechanism to avoid this overhead.
We can create a state on the object bench (a set of objects, each in a certain state) which
we want to use as a starting point for all tests in a specific test class. This starting set of
objects is called a fixture.
Fixtures can be defined, and they will then automatically be set up at the start of every
test of the same test class, thus reducing the overhead of each individual test.

Unit testing in BlueJ

Copyright © M. Kölling 13

8 Creating and using test fixtures

Summary: To create a fixture for a test class, create the desired objects on the object
bench and then select Object Bench To Test Fixture from the test class's menu.

We start creating a test fixture by simply creating the objects we need, and making
method calls on the objects to set them into the desired state.
For example, for testing our database class in the people project, we may want to have a
Database object, a Student object with name "Fred", which is inserted into the
database, and a Staff object with name "Jane" who is not in the database. We can start
by simply creating the objects and making the necessary call to insert Fred into the
database.
Once the state on the object bench is what we want to start our tests, we can select the
Object Bench To Test Fixture function from the DatabaseTest class.
Selecting this function will create a test fixture for the class, while removing all objects
from the bench.
When a class has a fixture, this fixture will be recreated at the start of every test. For
example, if we now create a new test for the Database class (by selecting Create Test
Method from its test class) the situation defined in the fixture will automatically be
restored. The fixture objects will appear in their defined state on the bench at the start of
the test recording.
The fixture state can also be explicitly recreated on the bench by selecting Test Fixture To
Object Bench from the test class's menu. This can be useful in cases where we want to
extend the fixture later, because new test methods need additional fixture objects.
In that case, we would use Test Fixture To Object Bench to regenerate the fixture state, and
then manually make the desired additions to the fixture state. Once finished, we can
again select Object Bench To Test Fixture to store the fixture. The old fixture will be
replaced.

Unit testing in BlueJ

Copyright © M. Kölling 14

9 Writing test methods by hand

Summary: Test methods can be written directly in the test class's source code.

Generating test methods and fixtures by recording our interaction and the object bench
state is only one option of generating unit tests. The other option is to write these test
methods by hand.
Test classes are Java classes like the other classes in the project, and they can be treated
the same way. In particular, we can open an editor to see the source code, we can edit the
code, compile and run it.
In traditional (non-BlueJ) use of JUnit, this is the standard way of creating test methods,
and BlueJ allows the same style of working. Recording tests interactively is an addition
to writing tests by hand, not a replacement.
For people unfamiliar with JUnit, a good way to start is to generate a test fixture and a
few test methods interactively, and then to examine the test classes source code. We will
notice that each test class has a method named setUp() that is used to set up the test
fixture. It also has one additional method for each test.
It is perfectly fine to edit existing test methods by hand to modify their behaviour, or to
add completely new, hand-written test methods. Remember that a test method's name
must start with the prefix "test" to be recognised as a test method.
Those who want to know more about writing JUnit tests should read some of the JUnit
literature referenced at the end of this tutorial.

Unit testing in BlueJ

Copyright © M. Kölling 15

10 Writing tests first

Summary: To create tests before implementation, tests can be written by hand, or
method stubs can be used.

The eXtreme Programming methodology [ref] suggests that tests should be written
before the implementation of any method. Using BlueJ's unit test integration this can be
done in two different ways.
Firstly, tests can be written by hand, as explained in the previous section. Test writing
then works the same way as in non-BlueJ implementations of JUnit.
Secondly, we can create method stubs in the reference class, returning dummy values for
methods with non-void return types. After doing this, we can create tests using the
interactive recording facility, and write assertions according to our expectations of the
finished implementation.

Unit testing in BlueJ

Copyright © M. Kölling 16

11 Multi-class testing

Summary: The New Class... function with class type Unit Test can be used to create
unattached test classes.

The examples given above used test classes which are attached to a reference class. This
attachment does not prevent the test classes from making use of other class types in its
tests, but it suggests a logical connection of the test class to the reference class.
Sometimes test classes are written that test several classes in combination. These classes
do not logically belong to a single class. To document this, they should not be directly
attached to a single class.
We can create unattached test classes by using the normal New Class... function, and then
selecting Unit Test as the class type in the new-class dialog.
Unattached test classes can be used in the same way as other test classes. We can create
test fixtures, make test methods and run the tests.

Unit testing in BlueJ

Copyright © M. Kölling 17

12 Just the summaries

1. BlueJ provides regression testing functionality by integrating JUnit.
2. Testing tools can be made visible with a switch in the preferences.
3. Create a test class by selecting Create Test Class from the class popup menu.
4. Create a test method by selecting Create Test Method... from the test class's menu.
5. Run all tests by clicking the Run Tests button. Run individual tests by selecting

them from the test class's menu.
6. The test result windows shows a summary of test runs and can display failure

details.
7. A test fixture is a prepared set of objects used as a starting point for tests.
8. To create a fixture for a test class, create the desired objects on the object bench

and then select Object Bench To Test Fixture from the test class's menu.
9. Test methods can be written directly in the test class's source code.
10. To create tests before implementation, tests can be written by hand, or method

stubs can be used.
11. The New Class... function with class type Unit Test can be used to create unattached

test classes.

