SW08
Assignment 2
Due date: 16 Nov 2004

File encoding and compression

The task

Write a file encoding application that can encode (and maybe compress) text files. This encoding is a part of a possible file compression. In the form you will implement it, it will only effectively compress files with very specific characteristics, and not compress others at all. More precisely: only files that have rather long sequences of equal characters in them will benefit from this compression. This is only one of many techniques that form part of more professional compression programs.

In this assignment we will deal with three file types, identified by file suffixes “.txt”, “.zup” and “.czp”.

.txt files are simple ASCII text files. They can be opened, read and written in any standard text editor.

.zup files are files encoded in zup format. zup is a format that we define ourselves for the purpose of encryption and better compression.

.czp files (compressed zup) are files that have been converted to zup format and compressed.

Your file converter should be able to convert between these three formats.

The project

This time, you do not get a project as a starting point. You must create a new project, and create the necessary classes.

Your project should have five classes: FileConverter, FileHandler, SimpleEncoder, SimpleDecoder and Compressor.

The classes should have at least the following public methods:

class FileConverter:

public void encode(String filename)

public void decode(String filename)

public void compress(String filename)

public void uncompress(String filename)

public void showFile(String filename)

public void decodeAndShowFile(String filename)

class FileHandler:

public List readFile(String filename)

public void writeFile(String filename, List chars)

class SimpleEncoder:

public List encode(List text)

class SimpleDecoder:

public List decode(List encoded)

class Compressor:

public List compress(List text)

public List uncompress(List text)

A short, informal description for each method is at the end of this assignment handout.

The basic idea is simple: We will use the FileHandler to read in a text file from disc. In our application, we will store texts (both encoded or not) as a list of characters (objects of class Character – look this up in the API documentation!).

Two-phased approach

Implement this project in two phases.

Phase 1: Implement the FileConverter so that it supports encoding and decoding between txt and zup format.

Phase 2: Implement czp compression in your FileConverter.

Start phase 2 only after phase 1 is complete.

zup encoding

zup encoding works as follows: We count how many different characters appear in the original text. Then we write, into the zup file,

· first, the number of distinct characters.

· then, a list of the appearing characters (each once). The position in this list represents a code for the character (the first character has code 0, the second has code 1, and so on).

· then the code for each character in the order in which they appear in the original text.

When numbers are written to the text file, they are written as characters. That means, for example, to write the number 3, the character with ASCII code 3 is written to the file. An example:

Original text:

p r o g r a m m i n g _ p r a c t i c e

zup file:

(12) p r o g a m i n _ c t e (0) (1) (2) (3) (1) (4) (5) (5) (6) (7) (3) (8) (0) (1) (4) (9) (10) (6) (9) (11)

The notation (x) denotes the character with ASCII code x. The order of the list of characters at the beginning can vary.

Note: In the current form, this is simply a different encoding. It does not compress the file at all. The idea behind this is that character codes are replaced by smaller numbers, which could then later, when we want to create cleverer compression algorithms, be represented in fewer bits.

czp compression

To produce czp format, the original text is first converted to zup format. Then each continuous sequence of equal characters is replaced by two entries: the character, and the number of occurrences of the character in the sequence. So, for example, instead of writing ‘xxxxxxaaaa’ into a file, we would write x6a4 (six times ‘x’, four times ‘a’). Again, numbers are written as characters with the corresponding code.

This will not produce very good compression for most text files, but is useful if the file is in fact an image file.

Test file that have been encoded in zup and czp format will be provided.

Steps

I recommend strongly to approach the problem is steps.

Step one might be to read in a file, and write it out (without conversion) using a different name.

Step two could be to implement showFile: Read a file and display it on the terminal.

Step three might be to implement conversion to and from zup format.

And so on. We will discuss later what the following steps might be. It is part of your job to think about this.

Help

You can get significant help through the discussion list. We will provide plenty of guidance and advice. BUT: it is your responsibility to find out what you need to know and ask the right questions! (Especially for the file handling, which you need at the beginning, we will give you some code which you are not yet expected to know.)

The team

This project must be done in pairs. Every student must contribute a substantial amount of work to the solution. (And you must declare so in writing. Making a false declaration of this kind is considered plagiarism and will get you into serious trouble!) Single person solutions will not be accepted. If your pair has problems working, you must contact your tutor immediately. A statement at submission time that your partner did not contribute will not be regarded as sufficient excuse. You need to observe and manage your progress continuously and address problems quickly.

You have only two weeks time – it is essential that you start working immediately and work regularly and in a well organised manner.

Submission

The assignment must be handed in to the MIP office by 15:00 on the due date (or earlier)! Late submissions will not be accepted.

Submission consists of:

· A cover page with the assignment name, subject name and your names on it.

· A short report (approx. three pages) describing the state of your project: what does it do, what works, what doesn’t, special features. Also, make a statement about what you have learned during this project. Include a statement stating that both team members have participated in the creation of all parts of this assignment.

· A printout of all source files and the class diagram. All source must conform to the style guide, and must be fully and appropriately commented using javadoc comments.

· An electronic submission of your project to your tutor via email.

Appendix: Informal specification of some methods

/**

 * Encode the specified file into 'zup' format. The file must exist, and

 * it must be a text file with suffix ".txt". The filename may or may not

 * include the suffix. If not, the ".txt" suffix is automatically appended.

 * The method creates an encoded file with the same base name and ".zup"

 * suffix.

 *

 * @param filename The file name of the file to be encoded.

 */

public void encode(String filename)

/**

 * Decode the specified file from 'zup' to 'txt' format. The file must

 * exist, and it must be a zup-encoded file with suffix ".zup". The

 * filename may or may not include the suffix. If not, the ".zup" suffix

 * is automatically appended. The method creates a decoded file with

 * the same base name and ".txt" suffix.

 *

 * @param filename The file name of the file to be decoded.

 */

public void decode(String filename)

/**

 * Compress the specified file into 'czp' format. The file must exist, and

 * it must be a text file with suffix ".txt". The filename may or may not

 * include the suffix. If not, the ".txt" suffix is automatically appended.

 * The method creates an encoded file with the same base name and ".czp"

 * suffix.

 *

 * @param filename The file name of the file to be compressed.

 */

public void compress(String filename)

/**

 * Uncompress the specified file from 'czp' to 'txt' format. The file must

 * exist, and it must be a czp-encoded file with suffix ".czp". The

 * filename may or may not include the suffix. If not, the ".czp" suffix

 * is automatically appended. The method creates an uncompressed file with

 * the same base name and ".txt" suffix.

 *

 * @param filename The file name of the file to be uncompressed.

 */

public void uncompress(String filename)

/**

 * Show the content of the requested file in the text terminal.

 * The file must exist, and it must be a text file with suffix ".txt".

 * The filename may or may not include the suffix. If not, the ".txt"

 * suffix is automatically appended.

 *

 * @param filename The file name of the file to be displayed.

 */

public void showFile(String filename)

/**

 * Decode and show the content of the requested file in the text terminal.

 * The file must exist, and it must be a text file with suffix ".zup".

 * The filename may or may not include the suffix. If not, the ".zup"

 * suffix is automatically appended. The file is decoded and displayed.

 *

 * @param filename The file name of the file to be displayed.

 */

public void decodeAndShowFile(String filename)

© M. Kölling, University of Southern Denmark

