
Objects First with Java

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page i

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Prentice Hall, we craft high quality print and
electronic publications that help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoneduc.com

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page ii

Objects First with Java

A Practical Introduction using BlueJ

David J. Barnes and Michael Kölling

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page iii

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoneduc.com

First published 2003

© Pearson Education Limited 2003

The rights of David J. Barnes and Michael Kölling to be identified as authors of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the united Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P 0LP.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect
to the programs.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Pearson Education has made every attempt to supply trademark
information about manufacturers and their products mentioned in this book. Java™ and Sun™
are trademarks or registered trademarks of Sun Microsystems Inc. Star Wars® is a registered
trademark of Lucasfilm Ltd.

ISBN 0130 44929 6

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
07 06 05 04 03

Typeset in 10/12pt TimesNewRomanPS by 30
Printed by Ashford Colour Press Ltd., Gosport

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page iv

To my family
Helen, John, Hannah, Ben and Sarah

djb

To my family
Leah, Sophie and Feena

mk

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page v

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page vi

Foreword by James Gosling, Sun Microsystems xvii

Preface to the instructor xviii

List of projects discussed in detail in this book xxv

Acknowledgements xxvii

Part 1 Foundations of object orientation 1

Chapter 1 Objects and classes 3

1.1 Objects and classes 3

1.2 Creating objects 4

1.3 Calling methods 5

1.4 Parameters 6

1.5 Data types 7

1.6 Multiple instances 8

1.7 State 8

1.8 What is in an object? 9

1.9 Object interaction 10

1.10 Source code 11

1.11 Another example 13

1.12 Return values 13

1.13 Objects as parameters 13

1.14 Summary 15

Chapter 2 Understanding class definitions 17

2.1 Ticket machines 17

2.1.1 Exploring the behavior of a naïve ticket machine 18

2.2 Examining a class definition 19

2.3 Fields, constructors and methods 21

2.3.1 Fields 22

Contents

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page vii

2.3.2 Constructors 24

2.4 Passing data via parameters 25

2.5 Assignment 27

2.6 Accessor methods 27

2.7 Mutator methods 29

2.7 Printing from methods 31

2.9 Summary of the naïve ticket machine 33

2.10 Reflecting on the design of the ticket machine 34

2.11 Making choices: the conditional statement 35

2.12 A further conditional-statement example 38

2.13 Local variables 39

2.14 Fields, parameters and local variables 40

2.15 Summary of the better ticket machine 41

2.16 Reviewing a familiar example 42

2.17 Summary 45

Chapter 3 Object interaction 49

3.1 The clock example 49

3.2 Abstraction and modularization 50

3.3 Abstraction in software 51

3.4 Modularization in the clock example 51

3.5 Implementing the clock display 52

3.6 Class diagrams versus object diagrams 53

3.7 Primitive types and object types 54

3.8 The ClockDisplay source code 56

3.8.1 Class NumberDisplay 56

3.8.2 String concatenation 58

3.8.3 The modulo operator 59

3.8.4 Class ClockDisplay 59

3.9 Objects creating objects 62

3.10 Multiple constructors 64

3.11 Method calls 64

3.11.1 Internal method calls 64

3.11.2 External method calls 65

3.11.3 Summary of the clock display 66

3.12 Another example of object interaction 67

3.12.1 The mail system example 67

3.12.2 The this key word 68

3.13 Using a debugger 70

3.13.1 Setting breakpoints 71

viii Contents

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page viii

3.13.2 Single stepping 72

3.13.3 Stepping into methods 74

3.14 Method calling revisited 74

3.15 Summary 75

Chapter 4 Grouping objects 77

4.1 Grouping objects in flexible-size collections 77

4.2 A personal notebook 78

4.3 A first look at library classes 78

4.3.1 An example of using a library 79

4.4 Object structures with collections 80

4.5 Numbering within collections 82

4.6 Removing an item from a collection 83

4.7 Processing a whole collection 84

4.7.1 The while loop 85

4.7.2 Iterating over a collection 87

4.7.3 Index access versus iterators 88

4.8 Summary of the notebook example 88

4.9 Another example: an auction system 89

4.9.1 The Lot class 89

4.9.2 The Auction class 90

4.9.3 Casting 92

4.10 Fixed-size collections 94

4.10.1 A log-file analyzer 94

4.10.2 Declaring array variables 96

4.10.3 Creating array objects 97

4.10.4 Using array objects 98

4.10.5 Analyzing the log file 99

4.10.6 The for loop 100

4.11 Summary 103

Chapter 5 More sophisticated behavior 105

5.1 Documentation for library classes 106

5.2 The TechSupport system 106

5.2.1 Exploring the TechSupport system 107

5.2.2 Reading the code 108

5.3 Reading class documentation 112

5.3.1 Interfaces versus implementation 113

5.3.2 Using library-class methods 114

Contents ix

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page ix

5.3.3 Checking string equality 115

5.4 Adding random behavior 116

5.4.1 The Random class 117

5.4.2 Random numbers with limited range 118

5.4.3 Generating random responses 119

5.5 Packages and import 121

5.6 Using maps for associations 122

5.6.1 The concept of a map 123

5.6.2 Using a HashMap 123

5.6.3 Using a map for the TechSupport system 124

5.7 Using sets 126

5.8 Tokenizing strings 127

5.9 Finishing the TechSupport system 129

5.10 Writing class documentation 130

5.10.1 Using javadoc in BlueJ 131

5.10.2 Elements of class documentation 131

5.11 Public versus private 133

5.11.1 Information hiding 133

5.11.2 Private methods and public fields 134

5.12 Learning about classes from their interfaces 135

5.13 Class variables and constants 138

5.13.1 The static key word 138

5.13.2 Constants 139

5.14 Summary 140

Chapter 6 Well-behaved objects 143

6.1 Testing and debugging 144

6.2 Unit testing within BlueJ 144

6.2.1 Using inspectors 148

6.2.2 Positive versus negative testing 150

6.3 Test automation 150

6.3.1 Regression testing 150

6.3.2 Automated checking of test results 153

6.4 Modularization and interfaces 154

6.5 A debugging scenario 156

6.6 Commenting and style 157

6.7 Manual walkthroughs 158

6.7.1 A high-level walkthrough 158

6.7.2 Checking state with a walkthrough 160

6.7.3 Verbal walkthroughs 162

6.8 Print statements 163

x Contents

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page x

6.8.1 Turning debugging information on or off 165

6.9 Debuggers 166

6.10 Putting the techniques into practice 167

6.11 Summary 167

Chapter 7 Designing classes 169

7.1 Introduction 170

7.2 The world-of-zuul game example 171

7.3 Introduction to coupling and cohesion 173

7.4 Code duplication 174

7.5 Making extensions 177

7.5.1 The task 177

7.5.2 Finding the relevant source code 177

7.6 Coupling 179

7.6.1 Using encapsulation to reduce coupling 179

7.7 Responsibility-driven design 183

7.7.1 Responsibilities and coupling 184

7.8 Localizing change 186

7.9 Implicit coupling 186

7.10 Thinking ahead 189

7.11 Cohesion 190

7.11.1 Cohesion of methods 190

7.11.2 Cohesion of classes 191

7.11.3 Cohesion for readability 192

7.11.4 Cohesion for reuse 193

7.12 Refactoring 194

7.12.1 Refactoring and testing 194

7.12.2 An example of refactoring 195

7.13 Design guidelines 197

7.14 Executing without BlueJ 199

7.14.1 Class methods 199

7.14.2 The main method 199

7.14.3 Limitations of class methods 200

7.15 Summary 200

Part 2 Application Structures 203

Chapter 8 Improving structure with inheritance 205

8.1 The DoME example 205

Contents xi

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xi

8.1.1 DoME classes and objects 206

8.1.2 DoME source code 208

8.1.3 Discussion of the DoME application 214

8.2 Using Inheritance 215

8.3 Inheritance hierarchies 216

8.4 Inheritance in Java 217

8.4.1 Inheritance and access rights 218

8.4.2 Inheritance and initialization 218

8.5 DoME: adding other item types 220

8.6 Advantages of inheritance (so far) 222

8.7 Subtyping 223

8.7.1 Subclasses and subtypes 224

8.7.2 Subtyping and assignment 225

8.7.3 Subtyping and parameter passing 226

8.7.4 Polymorphic variables 227

8.8 The Object class 227

8.9 Polymorphic collections 228

8.9.1 Element types 229

8.9.2 Casting revisited 229

8.9.3 Wrapper classes 230

8.10 The collection hierarchy 231

8.11 Summary 232

Chapter 9 More about inheritance 235

9.1 The problem: DoME’s print method 235

9.2 Static type and dynamic type 237

9.2.1 Calling print from Database 238

9.3 Overriding 239

9.4 Dynamic method lookup 241

9.5 Super call in methods 244

9.6 Method polymorphism 245

9.7 Object methods: toString 245

9.8 Protected access 248

9.9 Another example of inheritance with overriding 250

9.10 Summary 253

Chapter 10 Further abstraction techniques 255

10.1 Simulations 255

10.2 The foxes-and-rabbits simulation 256

xii Contents

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xii

10.2.1 The foxes-and-rabbits project 257

10.2.2 The Rabbit class 259

10.2.3 The Fox class 262

10.2.4 The Simulator class: setup 265

10.2.5 The Simulator class: a simulation step 268

10.2.6 Taking steps to improve the simulation 270

10.3 Abstract classes 270

10.3.1 The Animal superclass 271

10.3.2 Abstract methods 271

10.3.3 Abstract classes 274

10.4 More abstract methods 275

10.5 Multiple inheritance 277

10.5.1 An Actor class 277

10.5.2 Flexibility through abstraction 278

10.5.3 Selective drawing 279

10.5.4 Drawable actors: multiple inheritance 280

10.6 Interfaces 280

10.6.1 An Actor interface 280

10.6.2 Multiple inheritance of interfaces 281

10.6.3 Interfaces as types 282

10.6.4 Interfaces as specifications 283

10.6.5 A further example of interfaces 284

10.6.6 Abstract class or interface? 285

10.7 Summary of inheritance 285

10.8 Summary 286

Chapter 11 Handling errors 287

11.1 The address-book project 288

11.2 Defensive programming 292

11.2.1 Client–server interaction 292

11.2.2 Argument checking 293

11.3 Server error reporting 295

11.3.1 Notifying the user 295

11.3.2 Notifying the client object 296

11.4 Exception-throwing principles 299

11.4.1 Throwing an exception 299

11.4.2 Exception classes 300

11.4.3 The effect of an exception 301

Contents xiii

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xiii

11.4.4 Unchecked exceptions 302

11.4.5 Preventing object creation 303

11.5 Exception handling 304

11.5.1 Checked exceptions: the throws clause 304

11.5.2 Catching exceptions: the try block 305

11.5.3 Throwing and catching multiple exceptions 307

11.5.4 Propagating an exception 308

11.5.5 The finally clause 308

11.6 Defining new exception classes 309

11.7 Error recovery and avoidance 311

11.7.1 Error recovery 311

11.7.2 Error avoidance 312

11.8 Case study: text input/output 314

11.8.1 Readers, writers and streams 314

11.8.2 The address-book-io project 315

11.8.3 Text output with FileWriter 317

11.8.4 Text input with FileReader 318

11.8.5 Object serialization 319

11.9 Summary 320

Chapter 12 Designing applications 321

12.1 Analysis and design 321

12.1.1 The verb/noun method 322

12.1.2 The cinema booking example 322

12.1.3 Discovering classes 322

12.1.4 Using CRC cards 323

12.1.5 Scenarios 324

12.2 Class design 327

12.2.1 Designing class interfaces 328

12.2.2 User interface design 329

12.3 Documentation 329

12.4 Cooperation 330

12.5 Prototyping 330

12.6 Software growth 331

12.6.1 Waterfall model 331

12.6.2 Iterative development 331

12.7 Using design patterns 333

12.7.1 Structure of a pattern 333

12.7.2 Decorator 334

xiv Contents

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xiv

12.7.3 Singleton 334

12.7.4 Factory method 335

12.7.5 Observer 336

12.7.6 Pattern summary 337

12.8 Summary 338

Chapter 13 A case study 341

13.1 The case study 341

13.1.1 The problem description 341

13.2 Analysis and design 342

13.2.1 Discovering classes 342

13.2.2 Using CRC cards 343

13.2.3 Scenarios 344

13.3 Class design 346

13.3.1 Designing class interfaces 346

13.3.2 Collaborators 346

13.3.3 The outline implementation 347

13.3.4 Testing 351

13.3.5 Some remaining issues 351

13.4 Iterative development 351

13.4.1 Development steps 351

13.4.2 A first stage 352

13.4.3 Testing the first stage 356

13.4.4 A later stage of development 357

13.4.5 Further ideas for development 358

13.4.6 Reuse 359

13.5 Another example 359

13.6 Taking things further 360

Appendices

A Working with a BlueJ project 361

B Java data types 363

C Java control structures 365

D Operators 369

E Running Java without BlueJ 371

F Configuring BlueJ 375

Index 377

Contents xv

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xv

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xvi

Watching my daughter Kate, and her middle school classmates, struggle through a Java
course using a commercial IDE was a painful experience. The sophistication of the tool
added significant complexity to the task of learning. I wish that I had understood earlier what
was happening. As it was, I wasn’t able to talk to the instructor about the problem until it was
too late. This is exactly the sort of situation for which BlueJ is a perfect fit.

BlueJ is an interactive development environment with a mission: it is designed to be used
by students who are learning how to program. It was designed by instructors who have
been in the classroom facing this problem every day. It’s been refreshing to talk to the folks
who developed BlueJ: they have a very clear idea of what their target is. Discussions
tended to focus more on what to leave out, than what to throw in. BlueJ is very clean and
very targeting.

None the less, this book isn’t about BlueJ. It is about programming.

In Java.

Over the past several years Java has become widely used in the teaching of programming.
This is for a number of reasons. One is that Java has many characteristics that make it easy
to teach: it has a relatively clean definition; extensive static analysis by the compiler
informs students of problems early on; and it has a very robust memory model that elimi-
nates most ‘mysterious’ errors that arise when object boundaries or the type system are
compromized. Another is that Java has become commercially very important.

This book confronts head-on the hardest concept to teach: objects. It takes students from
their very first steps all the way through to some very sophisticated concepts.

It manages to solve one of the stickiest questions in writing a book about programming:
how to deal with the mechanics of actually typing in and running a program. Most books
silently skip over the issue, or touch it lightly, leaving it up to the instructor to figure out
how to solve the problem. And leaving the instructor with the burden of relating the mate-
rial being taught to the steps that students have to go through to work on the exercises.
Instead, it assumes the use of BlueJ and is able to integrate the tasks of understanding the
concepts with the mechanics of how students can explore them.

I wish it had been around for my daughter last year. Maybe next year ...

Foreword
by James Gosling, Sun Microsystems

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xvii

This book is an introduction to object-oriented programming for beginners. The main
focus of the book is general object-oriented and programming concepts from a software
engineering perspective.

While the first chapters are written for students with no programming experience, later
chapters are suitable for more advanced or professional programmers as well. In particu-
lar, programmers with experience in a non-object-oriented language who wish to migrate
their skills into object orientation should also be able to benefit from the book.

We use two tools throughout the book to enable the concepts introduced to be put into
practice: the Java programming language and the Java development environment BlueJ.

Java
Java was chosen because of a combination of two aspects: the language design and its pop-
ularity. The Java programming language itself provides a very clean implementation of
most of the important object-oriented concepts, and serves well as an introductory teach-
ing language. Its popularity ensures an immense pool of support resources.

In any subject area, having a variety of sources of information available is very helpful, for
teachers and students alike. For Java in particular, countless books, tutorials, exercises,
compilers, environments and quizzes already exist, in many different kinds and styles.
Many of them are online and many are available free of charge. The large amount and good
quality of support material makes Java an excellent choice as an introduction to object-ori-
ented programming.

With so much Java material already available, is there still room for more to be said about
it? We think there is, and the second tool we use is one of the reasons ...

BlueJ
The second tool, BlueJ, deserves more comment. This book is unique in its completely
integrated use of the BlueJ environment.

BlueJ is a Java development environment that was designed at Monash University, Australia,
explicitly as an environment for teaching introductory object-oriented programming. It is
better suited to introductory teaching than other environments for a variety of reasons:

Preface to the instructor

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xviii

■ The user interface is much simpler. Beginning students can typically use the BlueJ en-
vironment in a competent manner after 20 minutes of introduction. From then on,
instruction can concentrate on the important concepts at hand – object orientation and
Java – and no time needs to be wasted talking about environments, file systems, class
paths, DOS commands or DLL conflicts.

■ The environment supports important teaching tools not available in other environments.
One of them is visualization of class structure. BlueJ automatically displays a UML-like
diagram representing the classes and relationships in a project. Visualizing these important
concepts is a great help to both teachers and students. It is hard to grasp the concept of an
object when all you ever see on the screen is lines of code! The diagram notation is a
simple subset of UML, again tailored to the needs of beginning students. This makes it
easy to understand, but also allows migration to full UML in later courses.

■ One of the most important strengths of the BlueJ environment is the user’s ability to
directly create objects of any class, and then to interact with their methods. This creates
the opportunity for direct experimentation with objects, for little overhead in the envi-
ronment. Students can almost ‘feel’ what it means to create an object, call a method,
pass a parameter or receive a return value. They can try out a method immediately after
it has been written, without the need to write test drivers. This facility is an invaluable
aid in understanding the underlying concepts and language details.

BlueJ is a full Java environment. It is not a cut-down, simplified version of Java for teach-
ing. It runs on top of Sun Microsystems’ Java Development Kit, and makes use of the stan-
dard compiler and virtual machine. This ensures that it always conforms to the official and
most up-to-date Java specification.

The authors of this book have several years of teaching experience with the BlueJ environment
(and many more years without it before that). We both have experienced how the use of BlueJ
has increased the involvement, understanding and activity of students in our courses. One of
the authors is also a developer of the BlueJ system.

Real objects first
One of the reasons for choosing BlueJ was that it allows an approach where teachers truly
deal with the important concepts first. ‘Objects first’ has been a battle cry for many text-
book authors and teachers for some time. Unfortunately, the Java language does not make
this noble goal very easy. Numerous hurdles of syntax and detail have to be overcome
before the first experience with a living object arises. The minimal Java program to create
and call an object typically includes:

■ writing a class;

■ writing a main method, including concepts such as static methods, parameters, and
arrays in the signature;

■ a statement to create the object (‘new’);

■ an assignment to a variable;

■ the variable declaration, including variable type;

■ a method call, using dot notation;

Preface to the instructor xix

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xix

■ possibly a parameter list.

As a result, textbooks typically either

■ have to work their way through this forbidding list, and only reach objects somewhere
around Chapter 4; or

■ use a ‘Hello, world’-style program with a single static main method as the first exam-
ple, thus not creating any objects at all.

With BlueJ, this is not a problem. A student can create an object and call its methods as the
very first activity! Because users can create and interact with objects directly, concepts
such as classes, objects, methods and parameters can easily be discussed in a concrete
manner before looking at the first line of Java syntax. Instead of explaining more about
this here, we suggest that the curious reader dip into Chapter 1 – things will quickly
become clear then.

An iterative approach
Another important aspect of this book is that it follows an iterative style. In the computing
education community, a well-known educational design pattern exists that states that
important concepts should be taught early and often.1 It is very tempting for textbook
authors to try and say everything about a topic at the point where it is introduced. For
example, it is common, when introducing types, to give a full list of built-in data types, or
to discuss all available kinds of loop when introducing the concept of a loop.

These two approaches conflict: we cannot concentrate on discussing important concepts
first, and at the same time provide complete coverage of all topics encountered. Our expe-
rience with textbooks is that much of the detail is initially distracting, and has the effect of
drowning the important points, thus making them harder to grasp.

In this book we touch on all of the important topics several times, both within the same
chapter and across different chapters. Concepts are usually introduced at a level of detail
necessary for understanding and applying the task at hand. They are revisited later in a dif-
ferent context, and understanding deepens as the reader continues through the chapters.
This approach also helps to deal with the frequent occurrence of mutual dependences
between concepts.

Some teachers may not be familiar with an iterative approach. Looking at the first few
chapters, teachers used to a more sequential introduction will be surprised about the num-
ber of concepts touched on this early. It may seem like a steep learning curve.

It is important to understand that this is not the end of the story. Students are not expected
to understand everything about these concepts immediately. Instead, these fundamental
concepts will be revisited again and again throughout the book, allowing students to get a
deeper and deeper understanding over time. Since their knowledge level changes as they
work their way forward, revisiting important topics later allows them to gain a deeper
understanding overall.

xx Preface to the instructor

1 The ‘Early Bird’ pattern, in J. Bergin: ‘Fourteen pedagogical patterns for teaching computer science’,
Proceedings of the Fifth European Conference on Pattern Languages of Programs (EuroPLop 2000),
Irsee, Germany, July 2000.

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xx

We have tried this approach with students many times. It seems that students have fewer
problems dealing with it than some long-time teachers. And remember: a steep learning
curve is not a problem as long as you ensure that your students can climb it!

No complete language coverage
Related to our iterative approach is the decision not to try to provide complete coverage of
the Java language within the book.

The main focus of this book is to convey object-oriented programming principles in gener-
al, not Java language details in particular. Students studying with this book may be working
as software professionals for the next 30 or 40 years of their life – it is a fairly safe bet that
the majority of their work will not be in Java. Every serious textbook must of course attempt
to prepare them for something more fundamental than the language flavor of the day.

On the other hand, many Java details are important for actually doing the practical work.
In this book we cover Java constructs in as much detail as is necessary to illustrate the con-
cepts at hand and implement the practical work. Some constructs specific to Java have
been deliberately left out of the discussion.

We are aware that some instructors will choose to cover some topics that we do not discuss
in detail. That is expected and necessary. However, instead of trying to cover every possi-
ble topic ourselves (and thus blowing the size of this book out to 1500 pages), we deal with
it using hooks. Hooks are pointers, often in the form of questions that raise the topic and
give references to an appendix or outside material. These hooks ensure that a relevant topic
is brought up at an appropriate time, and leave it up to the reader or the teacher to decide
to what level of detail that topic should be covered. Thus hooks serve as a reminder of the
existence of the topic and a placeholder indicating a point in the sequence where discus-
sion can be inserted.

Individual teachers can decide to use the book as it is, following our suggested sequence,
or to branch out into sidetracks suggested by the hooks in the text.

Chapters also often include several questions suggesting discussion material related to the
topic, but not discussed in this book. We fully expect teachers to discuss some of these
questions in class, or students to research the answers as homework exercises.

Project-driven approach
The introduction of material in the book is project driven. The book discusses numerous
programming projects and provides many exercises. Instead of introducing a new construct
and then providing an exercise to apply this construct to solve a task, we first provide a
goal and a problem. Analyzing the problem at hand determines what kinds of solutions we
need. As a consequence, language constructs are introduced as they are needed to solve the
problems before us.

Early chapters provide at least two discussion examples. These are projects that are dis-
cussed in detail to illustrate the important concepts of each chapter. Using two very dif-
ferent examples supports the iterative approach: each concept is revisited in a different
context after it is introduced.

Preface to the instructor xxi

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxi

In designing this book we have tried to use a large number and wide variety of different
example projects. This will hopefully serve to capture the reader’s interest, but it also helps
to illustrate the variety of different contexts in which the concepts can be applied. Finding
good example projects is hard. We hope that our projects serve to give teachers good start-
ing points and many ideas for a wide variety of interesting assignments.

The implementation for all our projects is written very carefully, so that many peripheral
issues may be studied by reading the projects’ source code. We are strong believers in the
benefit of learning by reading and imitating good examples. For this to work, however, one
must make sure that the examples students read are well written and worth imitating. We
have tried to do this.

All projects are designed as open-ended problems. While one or more versions of each
problem are discussed in detail in the book, the projects are designed so that further exten-
sions and improvements can be done as student projects. Complete source code for all
projects is included. A list of projects discussed in this book is provided on page xxv.

Concept sequence rather than language constructs
One other aspect that distinguishes this book from many others is that it is structured along
fundamental software development tasks and not necessarily according to the particular
Java language constructs. One indicator of this is the chapter headings. In this book you
will not find many of the traditional chapter titles, such as ‘Primitive data types’ or
‘Control structures’. Structuring by fundamental development tasks allows us to give a
much more general introduction that is not driven by intricacies of the particular pro-
gramming language utilized. We also believe that it is easier for students to follow the
motivation of the introduction, and that it makes it much more interesting.

As a result of this approach, it is less straightforward to use the book as a reference book.
Introductory textbooks and reference books have different, partly competing, goals. To a
certain extent a book can try to be both, but compromises have to be made at certain points.
Our book is clearly designed as a textbook, and wherever a conflict occurred, the textbook
style took precedence over its use as a reference book.

We have, however, provided support for use as a reference book by listing the Java con-
structs introduced in each chapter in the chapter introduction.

Chapter sequence
Chapter 1 deals with the most fundamental concepts of object orientation: objects, classes
and methods. It gives a solid, hands-on introduction to these concepts without going into
the details of Java syntax. It also gives a first look at some source code. We do this by using
an example of graphical shapes that can be interactively drawn, and a second example of
a simple laboratory class enrollment system.

Chapter 2 opens up class definitions and investigates how Java source code is written to
create behavior of objects. We discuss how to define fields and implement methods. Here,
we also introduce the first types of statement. The main example is an implementation of
a ticket machine. We also look back to the laboratory class example from Chapter 1 to
investigate that a bit further.

xxii Preface to the instructor

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxii

Chapter 3 then enlarges the picture to discuss interaction of multiple objects. We see how
objects can collaborate by invoking each other’s methods to perform a common task. We
also discuss how one object can create other objects. A digital alarm clock display is dis-
cussed that uses two number display objects to show hours and minutes. As a second major
example, we examine a simulation of an email system in which messages can be sent
between mail clients.

In Chapter 4 we continue by building more extensive structures of objects. Most impor-
tantly, we start using collections of objects. We implement an electronic notebook and an
auction system to introduce collections. At the same time, we discuss iteration over col-
lections and have a first look at loops. The first collection being used is an ArrayList. In
the second half of the chapter we introduce arrays as a special form of a collection, and the
for loop as another form of a loop. We discuss an implementation of a web-log analyzer as
an example for array use.

Chapter 5 deals with libraries and interfaces. We introduce the Java standard library and
discuss some important library classes. More importantly, we explain how to read and
understand the library documentation. The importance of writing documentation in soft-
ware development projects is discussed, and we end by practicing how to write suitable
documentation for our own classes. Random, Set and Map are examples of classes that we
encounter in this chapter. We implement an Eliza-like dialog system and a graphical sim-
ulation of a bouncing ball to apply these classes.

Chapter 6, titled Well-behaved objects, deals with a whole group of issues connected to
producing correct, understandable and maintainable classes. It covers issues ranging from
writing clear, understandable code – including style and commenting – to testing and
debugging. Test strategies are introduced, and a number of debugging methods are dis-
cussed in detail. We use an example of a diary for appointment scheduling and an imple-
mentation of an electronic calculator to discuss these topics.

In Chapter 7 we discuss more formally the issues of dividing a problem domain into classes
for implementation. We introduce issues of designing classes well, including concepts such
as responsibility-driven design, coupling, cohesion and refactoring. An interactive, text-
based adventure game (World of Zuul) is used for this discussion. We go through several iter-
ations of improving the internal class structure of the game and extending its functionality,
and end with a long list of proposals for extensions that may be done as student projects.

Chapters 8 and 9 introduce inheritance and polymorphism with many of the related
detailed issues. We discuss a simple database of CDs and videos to illustrate the concepts.
Issues of code inheritance, subtyping, polymorphic method calls and overriding are dis-
cussed in detail.

In Chapter 10 we implement a predator/prey simulation. This serves to discuss additional
abstraction mechanisms based on inheritance, namely interfaces and abstract classes.

Chapter 11 then picks up the difficult issue of how to deal with errors. Several possible prob-
lems and solutions are discussed, and Java’s exception-handling-mechanism is discussed in
detail. We extend and improve an address book application to illustrate the concepts.

Chapter 12 steps back to discuss in more detail the next level of abstraction: how to structure
a vaguely described problem into classes and methods. In previous chapters we have assumed
that large parts of the application structure already exist, and we have made improvements.
Now it is time to discuss how we can get started from a clean slate. This involves detailed

Preface to the instructor xxiii

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxiii

discussion of what the classes should be that implement our application, how they interact,
and how responsibilities should be distributed. We use class–responsibilities–collaborators
(CRC) cards to approach this problem, while designing a cinema booking system.

In Chapter 13 we try to bring everything together and integrate many topics from the pre-
vious chapters of the book. It is a complete case study, starting with the application design,
through design of the class interfaces, down to discussing many important functional and
non-functional characteristics and implementation details. Topics discussed in earlier
chapters (such as reliability, data structures, class design, testing and extendibility) are
applied again in a new context.

Discussion group
The authors maintain an active email discussion group for the purpose of facilitating
exchange of ideas and mutual support for and by readers of this book and other BlueJ
users. Postings to this list are archived and publicly accessible. Using this list, teachers can
receive support and ideas from other teachers and the authors of this book. The mail
address for this list is bluej-discuss@bluej.org. Interested people can join the list or
browse the archives at

http://lists.bluej.org/mailman/listinfo/bluej-discuss

Additional material
This book includes all projects used as discussion examples and exercises on a CD. The
CD also includes the Java development environment (JDK) and BlueJ for various opera-
ting systems.

There is a support web site for this book at

http://www.bluej.org/objects-first

On this web site, updates to the examples can be found, and additional material is provid-
ed. For instance, the style guide used for all examples in this book is available on the web
site in electronic form, so that instructors can modify it to meet their own requirements.

The web site also includes a password-protected, teacher-only section that provides addi-
tional material.

A set of slides to teach a course with this book is also provided.

xxiv Preface to the instructor

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxiv

shapes Chapter 1
Simple drawing with some geometrical shapes; illustrates creation of objects, method call-
ing and parameters.

picture Chapter 1
An example using shape objects to draw a picture; introduces source code, Java syntax and
compilation.

lab-classes Chapter 1, Chapter 2, Chapter 8
A simple example with classes of students; illustrates objects, fields and methods. Used
again in Chapter 8 to add inheritance.

ticket-machine Chapter 2
A simulation of a ticket vending machine for train tickets; introduces more about fields,
constructors, accessor and mutator methods, parameters, and some simple statements.

book Chapter 2
Storing details of a book. Reinforcing the constructs used in the ticket-machine example.

clock-display Chapter 3
An implementation of a display for a digital clock; illustrates the concepts of abstraction,
modularization and object interaction.

mail system Chapter 3
A simple simulation of an email system. Used to demonstrate object creation and interaction.

notebook Chapter 4
An implementation of a (simple) electronic notebook; used to introduce collections and loops.

auction Chapter 4
An auction system. More about collections and loops, this time with iterators.

weblog-analyzer Chapter 4
A program to analyze web access log files; introduces arrays and for loops.

List of projects discussed in
detail in this book

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxv

tech-support Chapter 5
An implementation of an Eliza-like dialog program used to provide ‘technical support’ to
customers; introduces use of library classes in general and some specific classes in partic-
ular; reading and writing of documentation.

balls Chapter 5
A graphical animation of bouncing balls; demonstrates interface/implementation separa-
tion and simple graphics.

diary Chapter 6
The early stages of an implementation of a diary storing appointments; used to discuss
testing and debugging strategies.

calculator Chapter 6
An implementation of a desk calculator. This example reinforces concepts introduced earlier,
and is used to discuss testing and debugging.

bricks Chapter 6
A simple debugging exercise; models filling palettes with bricks for simple computations.

world-of-zuul Chapter 7, Chapter 9
A text-based, interactive adventure game. Highly extendable, makes a great open-ended
student project. Used here to discuss good class design, coupling, and cohesion. Used
again in Chapter 9 as an example for use of inheritance.

dome Chapter 8, Chapter 9
A database of CDs and videos. This project is discussed and then extended in great detail
to introduce the foundations of inheritance and polymorphism.

foxes-and-rabbits Chapter 10
A classic predator–prey simulation; reinforces inheritance concepts and adds abstract classes
and interfaces.

address-book Chapter 11
An implementation of an address book with an optional GUI interface. lookup is flexible:
entries can be searched by partial definition of name or phone number. This project makes
extensive use of exceptions.

cinema-booking-system Chapter 12
A system to manage advance seat bookings in a cinema. This example is used in a discus-
sion of class discovery and application design. No code is provided as the example repre-
sents the development of an application from a blank sheet of paper.

taxi Chapter 13
The taxi example is a combination of a booking system, management system, and simula-
tion. It is used as a case study to bring together many of the concepts and techniques dis-
cussed throughout the book.

xxvi Lists of projects discussed in detail in this book

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxvi

Many people have contributed in many different ways to this book and made its creation
possible.

First, and most importantly, John Rosenberg must be mentioned. John is Dean of the
Faculty of Information Technology of Monash University, Australia. It is by mere coinci-
dence of circumstance that John is not one of the authors of this book. He was one of the
driving forces in the development of BlueJ and the ideas and pedagogy behind it from the
very beginning, and we talked about the writing of this book for several years. Much of the
material in this book was developed in discussions with John. Simply the fact that there
are only twenty-four hours in a day, too many of which were already taken up with too
much other work, prevented him from actually writing this book. John has contributed to
this text continuously while it was being written and helped improve it in many ways. John
is a great ambassador for Monash and an excellent host. We have appreciated his friend-
ship and collaboration immensely.

The two other people who helped make BlueJ what it is are Bruce Quig and Andrew
Patterson, both at Monash University. Both have worked on BlueJ for many years, improv-
ing and extending the design and implementation while trying to write their PhDs at the
same time. Without their work, BlueJ would never have reached the quality and populari-
ty it has today, and this book might never have been written.

Another important contribution that made the creation of BlueJ and this book possible was
very generous support from Sun Microsystems. Emil Sarpa, working for Sun in Palo Alto,
CA, has believed in the BlueJ project from the very beginning. His support and amazing-
ly unbureaucratic way of cooperation has helped us immensely along the way.

Everyone at Pearson Education worked really hard to fit the production of this book into
a very tight schedule, and accommodated many of our idiosyncratic ways. Thanks to Kate
Brewin for her determined support for this project, and to the rest of the team, including
Bridget Allen, Kevin Ancient, Tina Cadle-Bowman, Tim Parker, Veronique Seguin and
Fiona Sharples.

Our reviewers also worked very hard on the manuscript, often at busy times of the year for
them, and we would like to express our appreciation to Michael Caspersen, Devdatt
Dubhashi, Khalid Mughal and Richard Snow for their encouragement and constructive input.

David would like to add his personal thanks to both staff and students of the Computer
Science Department at the University of Kent. The students who have taken the CO309
course have always been a privilege to teach. They also provide the essential stimulus and
motivation that makes teaching so much fun. My colleagues have provided superb teach-

Acknowledgements

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxvii

ing support this last year: Dick, Gift, John, Mike, Paul, Peter, Ralph, Rogerio, and Tom.
Ian Utting deserves particular thanks for covering my teaching during my sabbatical, when
I started work on this book. My appreciation, also, to Tim and Maggie, without whose
presence and laughter the department would be the poorer. Outside University life, various
people have supplied a wonderful recreational outlet to prevent writing from taking over
completely; thanks to my climbing friends Paul Farrant, Judy Dunkley, and (in particular)
to Chris Phillips whose friendship I appreciate and whose dogged determination on a route
is a wonder to behold – rockover, Chris! Thanks also to Joe Rotchell, whose style and
finesse speaking French on our Belgian cycling holiday was an inspiration!

Finally, I would like to thank my wife Helen, whose love is so special; and my children,
whose lives are so precious.

Michael would like to thank Andrew and Bruce for many hours of intense discussion.
Apart from the technical work that got done as a result of these, I enjoyed them immense-
ly. I like a good argument. John Rosenberg, who has been a mentor to me for many years
since the start of my academic career. Without his hospitality and support I would have
never made it to Australia, and without him as a PhD supervisor and colleague I would
never have achieved as much as I did in my work. It is a pleasure working with him, and I
owe him a lot. Thanks to Michael Caspersen, who is not only a good friend, but has influ-
enced my way of thinking about teaching during various workshops we have given togeth-
er. My colleagues in the software engineering group at the Mærsk Institute in Denmark:
Bent Bruun Kristensen, Palle Nowack, Bo Nørregaard Jørgensen, Kasper Hallenborg
Pedersen, and Daniel May. They have patiently put up with my missing every deadline for
every delivery possible while I was writing this book, and introduced me to life in
Denmark at the same time.

Finally, I would like to thank my wife Leah and my two little girls, Sophie and Feena. Many
times they had to put up with my long working hours at all times of day while I was writ-
ing for this book. Their love gives me the strength to continue and makes it all worthwhile.

xxviii Acknowledgements

8553 Prelims (i-xxviii) 27/8/02 11:01 am Page xxviii

