
In this chapter we look at some of the factors that influence the design of a class. What
makes a class design either good or bad? Writing good classes can take more effort in the
short term than writing bad classes, but in the long term that extra effort will often be jus-
tified. To help us write good classes there are some principles that we can follow. In
particular, we introduce the view that class design should be responsibility-driven, and
that classes should encapsulate their data.

This chapter is, like many of the chapters before, structured around a project. It can be
studied by just reading it and following our line of argument, or it can be studied in much
more depth by doing the project exercises in parallel with working through the chapter.

The project work is divided into three parts. In the first part, we discuss the necessary
changes to the source code and develop and show complete solutions to the exercises. The
solution for this part is also available in a project accompanying this book. The second
part suggests more changes and extensions, and we discuss possible solutions at a high
level (the class design level) but leave it to readers to do the lower-level work and to com-
plete the implementation.

The third part suggests even more improvements in the form of exercises. We do not give
solutions – the exercises apply the material discussed throughout the chapter.

Implementing all parts makes a good programming project over several weeks. It can also
be done very well as a group project.

CHAPTER

Designing classes7

Main concepts discussed in this chapter:

� responsibility-driven design � cohesion

� coupling � refactoring

Java constructs discussed in this chapter:

static (for methods), Math, enumerated types

OFWJ_C07.QXD 2/3/06 2:50 pm Page 189

Introduction

It is possible to implement an application and to get it to perform its task with badly
designed classes. Just executing a finished application does not usually indicate whether
it is structured well internally or not.

The problems typically surface when a maintenance programmer wants to make some
changes to an existing application. If, for example, a programmer attempts to fix a bug, or
wants to add new functionality to an existing program, a task that might be easy and obvi-
ous with well-designed classes may well be very hard and involve a great deal of work if
the classes are badly designed.

In larger applications, this effect already occurs during the original implementation. If the
implementation starts with a bad structure, then finishing it might later become overly
complex, and the complete program may either not be finished, or contain bugs, or take a
lot longer to build than necessary. In reality, companies often maintain, extend, and sell an
application over many years. It is not uncommon that an implementation for software that
we can buy in a software store today was started more than 10 years ago. In this situation,
a software company cannot afford to have badly structured code.

Since many of the effects of bad class design become most obvious when trying to adapt or
extend an application, we shall do exactly that. In this chapter we will use an example called
world-of-zuul, which is a simple, rudimentary implementation of a text-based adventure
game. In its original state the game is not actually very ambitious: for one thing, it is incom-
plete. By the end of this chapter, however, you will be in a position to exercise your
imagination and design and implement your own game and make it really fun and interesting.

While we work on extending the original application, we will take the opportunity to dis-
cuss aspects of its existing class design. We will see that the implementation we start with
has examples of bad design decisions in it, and we will see how this impacts on our tasks
and how we can fix them.

In the project examples for this book you will find two versions of the zuul project: zuul-
bad and zuul-better. Both implement exactly the same functionality, but some of the class
structure is different, representing bad design in one project and better design in the other.
The fact that we can implement the same functionality in either a good way or a bad way
illustrates the fact that bad design is not usually a consequence of having a difficult prob-
lem to solve. Bad design has more to do with the decisions that we make when solving a
particular problem. We cannot use the argument that there was no other way to solve the
problem as an excuse for bad design.

190 Chapter 7 � Designing classes

world-of-zuul Our world-of-zuul game is modeled on the original adventure game that was

developed in the early 1970s by Will Crowther, and expanded by Don Woods. The original

game is also sometimes known as the Colossal Cave Adventure. This was a wonderfully

imaginative and sophisticated game for its time, involving finding your way through a complex

cave system, locating hidden treasure, using secret words, and other mysteries, all in an

effort to score the maximum number of points. You can read more about it at places such

as http://jerz.setonhill.edu/if/canon/Adventure.htm and

http://www.rickadams.org/adventure/, or try doing a web search for

‘Colossal Cave Adventure.’

7.1

OFWJ_C07.QXD 2/3/06 2:50 pm Page 190

So, we will use the project with the bad design so that we can explore why it is bad, and
then improve it. The better version is an implementation of the changes we discuss here.

The world-of-zuul game example

From Exercise 7.1, you have seen that the zuul game is not yet very adventurous. It is, in
fact, quite boring in its current state. But it provides a good basis for us to design and
implement our own game, which will hopefully be more interesting.

We start by analyzing the classes that are already there in our first version, and trying to
find out what they do. The class diagram is shown in Figure 7.1.

7.2 The world-of-zuul game example 191

Exercise 7.1 Open the project zuul-bad. (This project is called ‘bad’ because its

implementation contains some bad design decisions, and we want to leave no doubt

that this should not be used as an example of good programming practice!) Execute

and explore the application. The project comment gives you some information about

how to run it.

While exploring the application, answer the following questions:

� What does this application do?

� What commands does the game accept?

� What does each command do?

� How many rooms are in the scenario?

� Draw a map of the existing rooms.

Exercise 7.2 After you know what the whole application does, try to find out what

each individual class does. Write down for each class the purpose of the class. You

need to look at the source code to do this. Note that you might not (and need not)

understand all of the source code. Often, reading through comments and looking at

method headers is enough.

7.2

Parser

Game

Command

Room

CommandWords

Figure 7.1

Zuul class diagram

OFWJ_C07.QXD 2/3/06 2:50 pm Page 191

The project shows five classes. They are Parser, CommandWords, Command, Room, and
Game. An investigation of the source code shows, fortunately, that these classes are quite
well documented, and we can get an initial overview of what they do by just reading the
class comment at the top of each class. (This fact also serves to illustrate that bad design
involves something deeper than simply the way that a class looks, or how good its docu-
mentation is.) Our understanding of the game will be assisted by having a look at the
source code to see what methods each class has, and what some of the methods appear to
do. Here, we summarize the purpose of each class:

� CommandWord The CommandWord class defines all valid commands in the game.
It does this by holding an array of strings with the command words.

� Parser The parser reads lines of input from the terminal and tries to interpret them
as commands. It creates objects of class Command that represent the command that
was entered.

� Command A Command object represents a command that was entered by the user. It
has methods that make it easy for us to check whether this was a valid command, and
to get the first and second words of the command as separate strings.

� Room A Room object represents a location in a game. Rooms can have exits that lead
to other rooms.

� Game The Game class is the main class of the game. It sets the game up, and then
enters a loop to read and execute commands. It also contains the code that implements
each user command.

192 Chapter 7 � Designing classes

Exercise 7.3 Design your own game scenario. Do this away from the computer.

Do not think about implementation, classes, or even programming in general. Just

think about inventing an interesting game. This could be done with a group of people.

The game can be anything that has as its base structure a player moving through dif-

ferent locations. Here are some examples:

� You are a white blood cell traveling through the body in search of viruses to attack…

� You are lost in a shopping mall and must find the exit…

� You are a mole in its burrow and you cannot remember where you stored your food

reserves before winter…

� You are an adventurer who searches through a dungeon full of monsters and other

characters…

� You are from the bomb squad and must find and defuse a bomb before it goes off…

Make sure that your game has a goal (so that it has an end and the player can ‘win’).

Try to think of many things to make the game interesting (trap doors, magic items,

characters that help you only if you feed them, time limits, whatever you like). Let your

imagination run wild.

At this stage, do not worry about how to implement these things.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 192

Introduction to coupling and cohesion

If we are to justify our assertion that some designs are better than others, then we need to
define some terms that will allow us to discuss the issues that we consider to be important
in class design. Two terms are central when talking about the quality of a class design:
coupling and cohesion.

The term coupling refers to the interconnectedness of classes. We have already discussed
in earlier chapters that we aim to design our applications as a set of cooperating classes
that communicate via well-defined interfaces. The degree of coupling indicates how tightly
these classes are connected. We strive for a low degree of coupling, or loose coupling.

The degree of coupling determines how hard it is to make changes in an application. In a
tightly coupled class structure, a change in one class can make it necessary to change sev-
eral other classes as well. This is what we try to avoid, because the effect of making one
small change can quickly ripple through a complete application. In addition, finding all
the places where changes are necessary and actually making the changes can be difficult
and time consuming.

In a loosely coupled system, on the other hand, we can often change one class without
making any changes to other classes, and the application will still work. We shall discuss
particular examples of tight and loose coupling in this chapter.

The term cohesion relates to the number and diversity of tasks for which a single unit of
an application is responsible. Cohesion is relevant for units of a single class and an indi-
vidual method.1

Ideally, one unit of code should be responsible for one cohesive task (that is, one task that
can be seen as a logical unit). A method should implement one logical operation, and a
class should represent one type of entity. The main reason behind the principle of cohe-
sion is reuse: if a method or a class is responsible for only one well-defined thing, then it
is much more likely that it can be used again in a different context. A complementary
advantage of following this principle is that, when change is required to some aspect of
an application, we are likely to find all the relevant pieces located in the same unit.

We shall discuss how cohesion influences quality of class design with examples below.

7.3 Introduction to coupling and cohesion 193

7.3

Concept:

The term coupling

describes the

interconnectedness

of classes. We

strive for loose

coupling in a

system – that is, a

system where each

class is largely

independent and

communicates with

other classes via a

small, well-defined

interface.

1 We sometimes also use the term module (or package in Java) to refer to a multi-class unit. Cohesion
is relevant at this level, too.

Exercise 7.4 Draw (on paper) a map for the game you invented in exercise 7.3.

Open the zuul-bad project, and save it under a different name (e.g. zuul). This is the

project you will use to make improvements and modifications throughout this chapter.

You can leave off the -bad suffix, since it will soon (hopefully) not be that bad anymore.

As a first step, change the createRooms method in the Game class to create the

rooms and exits you invented for your game. Test!

Concept:

The term cohesion

describes how well

a unit of code maps

to a logical task or

entity. In a highly

cohesive system

each unit of code

(method, class,

or module) is

responsible for a

well-defined task or

entity. Good class

design exhibits a

high degree of

cohesion.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 193

Code duplication

Code duplication is an indicator of bad design. The Game class shown in Code 7.1 con-
tains a case of code duplication. The problem with code duplication is that any change to
one version must also be made to the other if we are to avoid inconsistency. This increases
the amount of work a maintenance programmer has to do, and it introduces the danger of
bugs. It happens very easily that a maintenance programmer finds one copy of the code
and, having changed it, assumes that the job is done. There is nothing indicating that a
second copy of the code exists, and it might incorrectly remain unchanged.

194 Chapter 7 � Designing classes

7.4

public class Game

{

// some code omitted ...

private void createRooms()

{

Room outside, theatre, pub, lab, office;

// create the rooms

outside = new Room(

"outside the main entrance of the university");

theatre = new Room("in a lecture theatre");

pub = new Room("in the campus pub");

lab = new Room("in a computing lab");

office = new Room("in the computing admin office");

// initialise room exits

outside.setExits(null, theatre, lab, pub);

theatre.setExits(null, null, null, outside);

pub.setExits(null, outside, null, null);

lab.setExits(outside, office, null, null);

office.setExits(null, null, null, lab);

currentRoom = outside; // start game outside

}

// ... some code omitted ...

/**

* Print out the opening message for the player.

*/

private void printWelcome()

{

System.out.println();

System.out.println("Welcome to the World of Zuul!");

System.out.println(

"Zuul is a new, incredibly boring adventure game.");

System.out.println("Type 'help' if you need help.");

System.out.println();

Code 7.1

Selected sections

of the (badly

designed) Game

class

Concept:

Code duplication

(having the same

segment of code in

an application more

than once) is a sign

of bad design. It

should be avoided.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 194

7.4 Code duplication 195

System.out.println("You are " +

currentRoom.getDescription());

System.out.print("Exits: ");

if(currentRoom.northExit != null) {
System.out.print("north ");

}

if(currentRoom.eastExit != null) {
System.out.print("east ");

}

if(currentRoom.southExit != null) {
System.out.print("south ");

}

if(currentRoom.westExit != null) {
System.out.print("west ");

}

System.out.println();

}

// ... some code omitted ...

/**

* Try to go to one direction. If there is an exit, enter

* the new room, otherwise print an error message.

*/

private void goRoom(Command command)

{

if(!command.hasSecondWord()) {
// if there is no second word,

// we don’t know where to go

System.out.println("Go where?");

return;
}

String direction = command.getSecondWord();

// Try to leave current room.

Room nextRoom = null;

if(direction.equals("north")) {
nextRoom = currentRoom.northExit;

}

if(direction.equals("east")) {
nextRoom = currentRoom.eastExit;

}

if(direction.equals("south")) {
nextRoom = currentRoom.southExit;

}

if(direction.equals("west")) {
nextRoom = currentRoom.westExit;

}

if (nextRoom == null) {

System.out.println("There is no door!");

}

Code 7.1

continued

Selected sections

of the (badly

designed) Game

class

OFWJ_C07.QXD 2/3/06 2:50 pm Page 195

Both the printWelcome and goRoom methods contain the following lines of code:

System.out.println("You are " + currentRoom.getDescription());

System.out.print("Exits: ");

if(currentRoom.northExit != null) {

System.out.print("north ");

}

if(currentRoom.eastExit != null) {

System.out.print("east ");

}

if(currentRoom.southExit != null) {

System.out.print("south ");

}

if(currentRoom.westExit != null) {

System.out.print("west ");

}

System.out.println();

Code duplication is usually a symptom of bad cohesion. The problem here has its roots in
the fact that both methods in question do two things: printWelcome prints the welcome
message and prints the information about the current location, while goRoom changes the
current location and then prints information about the (new) current location.

Both methods print information about the current location, but neither can call the other,
because they also do other things. This is bad design.

A better design would use a separate, more cohesive method whose sole task is to print the
current location information (Code 7.2). Both the printWelcome and goRoom methods can
then make calls to this method when they need to print this information. This way, writing
the code twice is avoided, and when we need to change it, we need to change it only once.

196 Chapter 7 � Designing classes

else {

currentRoom = nextRoom;

System.out.println("You are " +

currentRoom.getDescription());

System.out.print("Exits: ");

if(currentRoom.northExit != null) {
System.out.print("north ");

}

if(currentRoom.eastExit != null) {
System.out.print("east ");

}

if(currentRoom.southExit != null) {
System.out.print("south ");

}

if(currentRoom.westExit != null) {
System.out.print("west ");

}

System.out.println();

}

}

// ... some code omitted ...
}

Code 7.1

continued

Selected sections

of the (badly

designed) Game

class

OFWJ_C07.QXD 2/3/06 2:50 pm Page 196

7.5 Making extensions 197

Making extensions

The zuul-bad project does work. We can execute it, and it correctly does everything that it
was intended to do. However, it is in some respects quite badly designed. A well-designed
alternative would perform in the same way. Just by executing the program we would not
notice any difference.

Once we try to make modifications to the project, however, we will notice significant
differences in the amount of work involved in changing badly designed code, compared
with changing a well-designed application. We will investigate this by making some
changes to the project. While we are doing this, we will discuss examples of bad design
when we see them in the existing source, and we will improve the class design before
we implement our extensions.

7.5.1 The task

The first task we will attempt is to add a new direction of movement. Currently, a player
can move in four directions: north, east, south, and west. We want to allow for multilevel
buildings (or cellars, or dungeons, or whatever you later want to add to your game) and
add up and down as possible directions. A player can then type "go down" to move, say,
down into a cellar.

Exercise 7.5 Implement and use a separate printLocationInfo method in

your project, as discussed in this section. Test your changes.

7.5

private void printLocationInfo()

{

System.out.println("You are " +

currentRoom.getDescription());

System.out.print("Exits: ");

if(currentRoom.northExit != null) {
System.out.print("north ");

}

if(currentRoom.eastExit != null) {
System.out.print("east ");

}

if(currentRoom.southExit != null) {
System.out.print("south ");

}

if(currentRoom.westExit != null) {
System.out.print("west ");

}

System.out.println();

}

Code 7.2

printLocationInfo

as a separate

method

OFWJ_C07.QXD 2/3/06 2:50 pm Page 197

198 Chapter 7 � Designing classes198 Chapter 7 � Designing classes

7.5.2 Finding the relevant source code

Inspection of the given classes shows us that at least two classes are involved in this
change: Room and Game.

Room is the class that stores (among other things) the exits of each room, and, as we saw
in Code 7.1, in the Game class the exit information from the current room is used to print
out information about exits and to move from one room to another.

The Room class is fairly short. Its source code is shown in Code 7.3. Reading the source,
we can see that the exits are mentioned in two different places: they are listed as fields at
the top of the class, and they get assigned in the setExits method. To add two new direc-
tions, we would need to add two new exits (upExit and downExit) in these two places.

public class Room

{

public String description;

public Room northExit;

public Room southExit;

public Room eastExit;

public Room westExit;

/**

* Create a room described "description". Initially, it

* has no exits. "description" is something like "a

* kitchen" or "an open court yard".

*/

public Room(String description)

{

this.description = description;

}

/**

* Define the exits of this room. Every direction either

* leads to another room or is null (no exit there).

*/

public void setExits(Room north, Room east, Room south,

Room west)

{

if(north != null) {
northExit = north;

}

if(east != null) {
eastExit = east;

}

if(south != null) {
southExit = south;

}

if(west != null) {
westExit = west;

}

}

Code 7.3

Source code of the

(badly designed)

Room class

OFWJ_C07.QXD 2/3/06 2:50 pm Page 198

7.6 Coupling 199

It is a bit more work to find all relevant places in the Game class. The source code is
somewhat longer (it is not shown fully here), and finding all the relevant places takes
some patience and care.

Reading the code shown in Code 7.1, we can see that the Game class makes heavy use of
the exit information of a room. The Game object holds a reference to one room in the
currentRoom variable, and frequently accesses this room’s exit information:

� In the createRoom method, the exits are defined.

� In the printWelcome method, the current room’s exits are printed out so that the
player knows where to go when the game starts.

� In the goRoom method the exits are used to find the next room. They are then used
again to print out the exits of the next room we have just entered.

If we now want to add two new exit directions, we will have to add the up and down
options in all these places. However, read the following section before you do this.

Coupling

The fact that there are so many places where all exits are enumerated is symptomatic of
poor class design. When declaring the exit variables in the Room class we need to list one
variable per exit; in the setExits method there is one if statement per exit; in the
goRoom method there is one if statement per exit; in the printLocationInfo method
there is one if statement per exit; and so on. This design decision now creates work for us:
when adding new exits, we need to find all these places and add two new cases. Imagine
the effect if we decided to use directions such as northwest, southeast, etc.!

To improve the situation, we decide to use a HashMap to store the exits, rather than sepa-
rate variables. Doing this, we should be able to write code that can cope with any number
of exits and does not need so many modifications. The HashMap will contain a mapping
from a named direction (e.g. ‘north’) to the room that lies in that direction (a Room
object). Thus each entry has a string as the key and a Room object as the value.

This is a change in the way a room stores information internally about neighboring
rooms. Theoretically, this is a change that should affect only the implementation of the
Room class (how the exit information is stored), not the interface (what the room stores).

Ideally, when only the implementation of a class changes, other classes should not be
affected. This would be a case of loose coupling.

7.6

/**

* Return the description of the room (the one that was

* defined in the constructor).

*/

public String getDescription()

{

return description;

}

}

Code 7.3

continued

Source code of the

(badly designed)

Room class

OFWJ_C07.QXD 2/3/06 2:50 pm Page 199

In our example, this does not work. If we remove the exit variables in the Room class and
replace them with a HashMap, the Game class will not compile any more. It makes
numerous references to the room’s exit variables, which all would cause errors.

We see that we have a case here of tight coupling. In order to clean this up, we will decouple
these classes before we introduce the HashMap.

7.6.1 Using encapsulation to reduce coupling

One of the main problems in this example is the use of public fields. The exit fields in the
Room class have all been declared public. Clearly, the programmer of this class did not follow
the guidelines we have set out earlier in this book (‘Never make fields public!’). We shall now
see the result! The Game class in this example can make direct accesses to these fields (and it
makes extensive use of this fact). By making the fields public, the Room class has exposed in
its interface not only the fact that it has exits, but also exactly how the exit information is
stored. This breaks one of the fundamental principles of good class design: encapsulation.

The encapsulation guideline (hiding implementation information from view) suggests
that only information about what a class can do should be visible to the outside, not about
how it does it. This has a great advantage: if no other class knows how our information is
stored, then we can easily change how it is stored without breaking other classes.

We can enforce this separation of what and how by making the fields private and using an
accessor method to access them. The first stage of our modified Room class is shown in
Code 7.4.

200 Chapter 7 � Designing classes200 Chapter 7 � Designing classes

public class Room

{

private String description;

private Room northExit;

private Room southExit;

private Room eastExit;

private Room westExit;

// existing methods unchanged

public Room getExit(String direction)

{

if(direction.equals("north")) {
return northExit;

}

if(direction.equals("east")) {
return eastExit;

}

if(direction.equals("south")) {
return southExit;

}

if(direction.equals("west")) {
return westExit;

}

return null;

}

}

Code 7.4

Using an accessor

method to decrease

coupling

Concept:

Proper

encapsulation in

classes reduces

coupling, and thus

leads to a better

design.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 200

Having made this change to the Room class, we need to change the Game class as well.
Wherever an exit variable was accessed, we now use the accessor method. For example,
instead of writing

nextRoom = currentRoom.eastExit;

we now write

nextRoom = currentRoom.getExit("east");

This makes one section in the Game class much easier as well. In the goRoom method, the
replacement suggested here will result in the following code segment:

Room nextRoom = null;

if(direction.equals("north")) {

nextRoom = currentRoom.getExit("north");

}

if(direction.equals("east")) {

nextRoom = currentRoom.getExit("east");

}

if(direction.equals("south")) {

nextRoom = currentRoom.getExit("south");

}

if(direction.equals("west")) {

nextRoom = currentRoom.getExit("west");

}

Instead, this whole code segment can now be replaced with:

Room nextRoom = currentRoom.getExit(direction);

So far, we have not changed the representation of the exits in the Room class. We have
only cleaned up the interface. The change in the Game class is minimal – instead of an
access of a public field, we use a method call – but the gain is dramatic. We can now
make a change to the way exits are stored in the room, without any need to worry about
breaking anything in the Game class. The internal representation in Room has been com-
pletely decoupled from the interface. Now that the design is the way it should have been
in the first place, exchanging the separate exit fields for a HashMap is easy. The changed
code is shown in Code 7.5.

7.6 Coupling 201

Exercise 7.6 Make the changes we have described to the Room and Game classes.

Exercise 7.7 Make a similar change to the printLocationInfo method of

Game so that details of the exits are now prepared by the Room rather than the Game.

Define a method in Room with the following signature:

/**

* Return a description of the room's exits,

* for example, "Exits: north west".

* @return A description of the available exits.

*/

public String getExitString()

OFWJ_C07.QXD 2/3/06 2:50 pm Page 201

202 Chapter 7 � Designing classes202 Chapter 7 � Designing classes

import java.util.HashMap;

// class comment omitted

class Room

{

private String description;

private HashMap<String, Room> exits;

/**

* Create a room described "description". Initially, it

* has no exits. "description" is something like "a

* kitchen" or "an open court yard".

*/

public Room(String description)

{

this.description = description;

exits = new HashMap<String, Room>();

}

/**

* Define the exits of this room. Every direction either

* leads to another room or is null (no exit there).

*/

public void setExits(Room north, Room east, Room south,

Room west)

{

if(north != null)
exits.put("north", north);

if(east != null)
exits.put("east", east);

if(south != null)
exits.put("south", south);

if(west != null)
exits.put("west", west);

}

/**

* Return the room that is reached if we go from this

* room in direction "direction". If there is no room in

* that direction, return null.

*/

public Room getExit(String direction)

{

return exits.get(direction);

}

/**

* Return the description of the room (the one that was

* defined in the constructor).

*/

public String getDescription()

{

return description;

}

}

Code 7.5

Source code of the

Room class

OFWJ_C07.QXD 2/3/06 2:50 pm Page 202

7.6 Coupling 203

It is worth emphasizing again that we can make this change now without even checking
whether anything will break elsewhere. Since we have changed only private aspects of the
Room class, which, by definition, cannot be used in other classes, this change does not
impact on other classes. The interface remains unchanged.

A by-product of this change is that our Room class is now even shorter. Instead of listing
four separate variables, we have only one. In addition the getExit method is consider-
ably simplified.

Recall that the original aim that set off this series of changes was to make it easier to add
the two new possible exits in the up and down direction. This has already become a lot
easier. Since we now use a HashMap to store exits, storing these two additional directions
will work without any change. We can also obtain the exit information via the getExit
method without any problem.

The only place where knowledge about the four existing exits (north, east, south, west) is
still coded into the source is in the setExits method. This is the last part that needs
improvement. At the moment the method’s signature is

public void setExits(Room north, Room east, Room south, Room west)

This method is part of the interface of the Room class, so any change we make to it will
inevitably affect some other classes by virtue of coupling. It is worth noting that we can never
completely decouple the classes in an application, otherwise objects of different classes would
not be able to interact with one another. Rather, we try to keep the degree of coupling as low
as possible. If we have to make a change to setExits anyway, to accommodate additional
directions, then our preferred solution is to replace it entirely with this method:

/**

* Define an exit from this room.

* @param direction The direction of the exit.

* @param neighbor The room in the given direction.

*/

public void setExit(String direction, Room neighbor)

{

exits.put(direction, neighbor);

}

Now, the exits of this room can be set one exit at a time, and any direction can be used for
an exit. In the Game class, the change that results from modifying the interface of Room is
as follows. Instead of writing

lab.setExits(outside, office, null, null);

we now write

lab.setExit("north", outside);

lab.setExit("east", office);

We have now completely removed the restriction from Room that it can store only four
exits. The Room class is now ready to store up and down exits, as well as any other direc-
tion you might think of (northwest, southeast, etc.).

Exercise 7.8 Implement the changes described in this section in your own zuul project.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 203

204 Chapter 7 � Designing classes204 Chapter 7 � Designing classes

Responsibility-driven design
We have seen in the previous section that making use of proper encapsulation reduces
coupling and can significantly reduce the amount of work needed to make changes to an
application. Encapsulation, however, is not the only factor that influences the degree of
coupling. Another aspect is known by the term responsibility-driven design.

Responsibility-driven design expresses the idea that each class should be responsible for
handling its own data. Often, when we need to add some new functionality to an applica-
tion, we need to ask ourselves in which class we should add a method to implement this
new function. Which class should be responsible for the task? The answer is that the class
that is responsible for storing some data should also be responsible for manipulating it.

How well responsibility-driven design is used influences the degree of coupling, and
therefore, again, the ease with which an application can be modified or extended. As
usual, we will discuss this in more detail with our example.

7.7.1 Responsibilities and coupling

The changes to the Room class that we discussed in Section 7.6.1 make it quite easy now
to add the new directions for up and down movement in the Game class. We investigate
this with an example. Assume we want to add a new room (the cellar) under the office.
All we have to do to achieve this is to make some small changes to the Game’s
createRooms method to create the room, and make two calls to set the exits:

private void createRooms()

{

Room outside, theatre, pub, lab, office, cellar;

...

cellar = new Room("in the cellar");

...

office.setExit("down", cellar);

cellar.setExit("up", office);

}

Because of the new interface of the Room class, this will work without problems. This
change is now very easy and confirms that the design is getting better.

Further evidence of this can be seen if we compare the original version of the
printLocationinfo method shown in Code 7.2 with the getExitString method
shown in Code 7.6 that represents a solution to Exercise 7.7.

/**

* Return a description of the room’s exits,

* for example "Exits: north west".

* @return A description of the available exits.

*/

public String getExitString()

{

String exitString = "Exits: ";

Code 7.6

The getExitString

method of Room

7.7

Concept:

Responsibility-

driven design is the

process of designing

classes by assigning

well-defined

responsibilities to

each class. This

process can be used

to determine which

class should

implement which

part of an application

function.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 204

7.7 Responsibility-driven design 205

Because information about its exits is now stored only in the room itself, it is the room
that is responsible for providing that information. The room can do this much better than
any other object, since it has all the knowledge about the internal storage structure of the
exit data. Now inside the Room class we can make use of the knowledge that exits are
stored in a HashMap, and we can iterate over that map to describe the exits.

Consequently, we replace the version of getExitString shown in Code 7.6 with the
version shown in Code 7.7. This method finds all the names for exits in the HashMap (the
keys in the HashMap are the names of the exits) and concatenates them to a single string,
which is then returned. (We need to import the classes Set and Iterator for this to work.)

Our goal to reduce coupling demands that, as far as possible, changes to the Room class
do not require changes to the Game class. We can still improve this.

/**

* Return a description of the room's exits,

* for example "Exits: north west".

* @return A description of the available exits.

*/

public String getExitString()

{

String returnString = "Exits:";

Set<String> keys = exits.keySet();

for(String exit : keys)
returnString += " " + exit;

return returnString;

}

Code 7.7

A revised version of

getExitString

Exercise 7.9 Look up the keySet method in the documentation of HashMap.

What does it do?

Exercise 7.10 Explain, in detail and in writing, how the getExitString method

shown in Code 7.7 works.

if(northExit != null)
exitString += "north ";

if(eastExit != null)
exitString += "east ";

if(southExit != null)
exitString += "south ";

if(westExit != null)
exitString += "west ";

return exitString;

}

Code 7.6

continued

The getExitString

method of Room

OFWJ_C07.QXD 8/3/06 10:59 am Page 205

Currently, we have still encoded in the Game class the knowledge that the information we
want from a room consists of a description string and the exit string:

System.out.println("You are " + currentRoom.getDescription());

System.out.println(currentRoom.getExitString());

What if we add items to rooms in our game? Or monsters? Or other players?

When we describe what we see, the list of items, monsters, and other players should be
included in the description of the room. We would need not only to make changes to the
Room class to add these things, but also to change the code segment above where the
description is printed out.

This is again a breach of the responsibility-driven design rule. Since the Room class holds
information about a room, it should also produce a description for a room. We can
improve this by adding to the Room class the following method:

/**

* Return a long description of this room, of the form:

* You are in the kitchen.

* Exits: north west

* @return A description of the room, including exits.

*/

public String getLongDescription()

{

return "You are " + description + ".\n" + getExitString();

}

In the Game class we then write

System.out.println(currentRoom.getLongDescription());

The ‘long description’ of a room now includes the description string, information about the
exits, and may in the future include anything else there is to say about a room. When we make
these future extensions, we will have to make changes to only a single class: the Room class.

Localizing change

Another aspect of the decoupling and responsibility principles is that of localizing
change. We aim to create a class design that makes later changes easy by localizing the
effects of a change.

206 Chapter 7 � Designing classes206 Chapter 7 � Designing classes

Exercise 7.11 Implement the changes described in this section in your own zuul

project.

Exercise 7.12 Draw an object diagram with all objects in your game, the way they

are just after starting the game.

Exercise 7.13 How does the object diagram change when you execute a go

command?

7.8

OFWJ_C07.QXD 2/3/06 2:50 pm Page 206

Ideally, only a single class needs to be changed to make a modification. Sometimes several
classes need change, but then we aim at this being as few classes as possible. In addition,
the changes needed in other classes should be obvious, easy to detect, and easy to carry out.

To a large extent we can achieve this by following good design rules such as using
responsibility-driven design and aiming for loose coupling and high cohesion. In addi-
tion, however, we should have modification and extension in mind when we create our
applications. It is important to anticipate that an aspect of our program might change, in
order to make this change easy.

Implicit coupling

We have seen that the use of public fields is one practice that is likely to create an
unnecessarily tight form of coupling between classes. With this tight coupling, it may be
necessary to make changes to more than one class for what should have been a simple
modification. Therefore public fields should be avoided. However, there is an even worse
form of coupling: implicit coupling.

Implicit coupling is a situation where one class depends on internal information of
another, but this dependence is not immediately obvious. The tight coupling in the case of
the public fields was not good, but at least it was obvious. If we change the public fields
in one class, and forget about the other, the application will not compile any more and the
compiler will point out the problem. In cases of implicit coupling, omitting a necessary
change can go undetected.

We can see the problem arising if we try to add further command words to the game.

Suppose that we want to add the command look to the set of legal commands. The pur-
pose of look is merely to print out the description of the room and the exits again (we
‘look around the room’) – this could be helpful if we have entered a sequence of com-
mands in a room so that the description has scrolled out of view, and we cannot remember
where the exits of the current room are.

We can introduce a new command word by simply adding it to the array of known words
in the validCommands array in the CommandWords class:

// a constant array that holds all valid command words

private static final String validCommands[] = {

"go", "quit", "help", "look"

};

This, by the way, shows an example of good cohesion: instead of defining the command
words in the parser, which would have been one obvious possibility, the author created a
separate class just to define the command words. This makes it now very easy for us to
find the place where command words are defined, and it is easy to add one. The author was
obviously thinking ahead, assuming that more commands might be added later, and created
a structure that makes this very easy.

We can test this already. However, after making this change, when we execute the game
and type the command look, nothing happens. This contrasts with the behavior of an
unknown command word: if we type any unknown word, we see the reply

I don’t know what you mean...

7.9 Implicit coupling 207

Concept:

One of the main

goals of a good

class design is

that of localizing

change: making

changes to one

class should have

minimal effects on

other classes.

7.9

OFWJ_C07.QXD 2/3/06 2:50 pm Page 207

208 Chapter 7 � Designing classes208 Chapter 7 � Designing classes

Thus the fact that we do not see this reply indicates that the word was recognized, but
nothing happens because we have not yet implemented an action for this command.

We can fix this by adding a method for the look command to the Game class:

private void look()

{

System.out.println(currentRoom.getLongDescription());

}

After this, we only need to add a case for the look command in the processCommand
method, which will invoke the look method when the look command is recognized:

if (commandWord.equals("help")) {

printHelp();

}

else if (commandWord.equals("go")) {

goRoom(command);

}

else if (commandWord.equals("look")) {

look();

}

else if (commandWord.equals("quit")) {

wantToQuit = quit(command);

}

Try this out, and you will see that it works.

Coupling between the Game, Parser, and CommandWord classes so far seems to have
been very good – it was easy to make this extension, and we got it to work quickly.

The problem that was mentioned before – implicit coupling – becomes apparent when we
now issue a help command. The output is

You are lost. You are alone. You wander

around at the university.

Your command words are:

go quit help

Now we notice a small problem. The help text is incomplete: the new command, look, is
not listed.

This seems easy to fix: we can just edit the help text string in the Game’s printHelp
method. This is quickly done, and does not seem a great problem. But suppose we had not
noticed this error now. Did you think of this problem before you just read about it here?

Exercise 7.14 Add the look command to your version of the zuul game.

Exercise 7.15 Add another command to your game. For a start, you could choose

something simple, such as a command eat that, when executed, just prints out ‘You

have eaten now and you are not hungry any more.’ Later, we can improve this so that

you really get hungry over time and you need to find food.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 208

This is a fundamental problem, because every time a command is added the help text
needs to be changed, and it is very easy to forget to make this change. The program com-
piles and runs, and everything seems fine. A maintenance programmer may well believe
that the job is finished, and release a program that now contains a bug.

This is an example of implicit coupling. When commands change, the help text must be
modified (coupling), but nothing in the program source clearly points out this dependence
(thus implicit).

A well-designed class will avoid this form of coupling by following the rule of responsi-
bility-driven design: since the CommandWord class is responsible for command words, it
should also be responsible for printing command words. Thus we add the following
method to the CommandWord class:

/**

* Print all valid commands to System.out.

*/

public void showAll()

{

for(String command : validCommands) {

System.out.print(command + " ");

}

System.out.println();

}

The idea here is that the printHelp method in Game, instead of printing a fixed text with
the command words, invokes a method that asks the CommandWords class to print all its
command words. Doing this ensures that the correct command words will always be
printed, and adding a new command will also add it to the help text without further change.

The only remaining problem is that the Game object does not have a reference to the
CommandWords object. You can see in the class diagram (Figure 7.1) that there is no
arrow from Game to CommandWords. This indicates that the Game class does not even
know of the existence of the CommandWords class. Instead, the game just has a parser,
and the parser has command words.

We could now add a method to the parser that hands the CommandWords object to the
Game object, so that they could communicate. This would, however, increase the degree of
coupling in our application: Game would then depend on CommandWords, which it cur-
rently does not. We would see this effect in the class diagram: Game would then have an
arrow to CommandWords.

The arrows in the diagram are, in fact, a good first indication of how tightly coupled a
program is: the more arrows, the more coupling. As an approximation of good class
design, we can aim at creating diagrams with few arrows.

Thus the fact that Game did not have a reference to CommandWords is a good thing! We
should not change this. From Game’s viewpoint, the fact that the CommandWords class
exists is an implementation detail of the parser. The parser returns commands, and
whether it uses a CommandWords object to achieve this or something else is entirely up to
the parser’s implementation.

It follows that a better design just lets the Game talk to the Parser, which in turn may
talk to CommandWords. We can implement this by adding the following code to the
printHelp method in Game:

7.9 Implicit coupling 209

OFWJ_C07.QXD 2/3/06 2:50 pm Page 209

System.out.println("Your command words are:");

parser.showCommands();

All that is missing then is the showCommands method in the Parser, which delegates
this task to the CommandWords class. Here is the complete method (in class Parser):

/**

* Print out a list of valid command words.

*/

public void showCommands()

{

commands.showAll();

}

The full implementation of all changes discussed in this chapter so far is available in your
code examples in a project named zuul-better. If you have done the exercises so far, you
can ignore this project and continue to use your own. If you have not done the exercises,
but want to do the following exercises in this chapter as a programming project, you can
use the zuul-better project as your starting point.

Thinking ahead

The design we have implemented now is an important improvement to the original ver-
sion. It is, however, possible to improve it even more.

One characteristic of a good software designer is the ability to think ahead. What might
change? What can we safely assume will stay unchanged for the life of the program?

One assumption that we have hard-coded in most of our classes is that this game will run
as a text-based game with terminal input and output. But will it always be like this?

It might be an interesting extension later to add a graphical user interface with menus,
buttons, and images. In that case, we would not want to print the information to the text
terminal any more. We might still have command words, and we might still want to show
them when a player enters a help command. But we might then show them in a text field
in a window, rather than using System.out.println.

It is good design to try to encapsulate all information about the user interface in a single
class or a clearly defined set of classes. Our solution from section 7.9 for example, the
showAll method in the CommandWords class, does not follow this design rule. It would be
nicer to define that CommandWords is responsible for producing (but not printing!) the list
of command words, but that the Game class should decide how it is presented to the user.

We can easily achieve this by changing the showAll method so that it returns a string
containing all command words instead of printing them out directly. (We should probably

210 Chapter 7 � Designing classes210 Chapter 7 � Designing classes

Exercise 7.16 Implement the improved version of printing out the command

words, as described in this section.

Exercise 7.17 If you now add another new command, do you still need to change

the Game class? Why?

7.10

OFWJ_C07.QXD 2/3/06 2:50 pm Page 210

rename it getCommandList when we make this change.) This string can then be printed
in the printHelp method in Game.

Note that this does not gain us anything right now, but we might profit from this improved
design in the future.

Cohesion

We introduced the idea of cohesion in Section 7.3: a unit of code should always be
responsible for one and only one task. We shall now investigate the cohesion principle in
more depth and analyze some examples.

The principle of cohesion can be applied to classes and methods: classes should display a
high degree of cohesion, and so should methods.

7.11.1 Cohesion of methods

When we talk about cohesion of methods, we seek to express the ideal that any one
method should be responsible for one and only one well-defined task.

We can see an example of a cohesive method in the Game class. This class has a private
method named printWelcome to show the opening text, and this method is called when
the game starts in the play method (Code 7.8).

7.11 Cohesion 211

Exercise 7.18 Implement the suggested change. Make sure that your program

still works as before.

Exercise 7.19 Find out what the model-view-controller pattern is. You can do a

web search to get information, or you can use any other sources you find. How is it

related to the topic discussed here? What does it suggest? How could it be applied

to this project? (Only discuss its application to this project, as an actual implemen-

tation would be an advanced challenge exercise.)

7.11

Concept:

Method cohesion.

A cohesive method

is responsible for

one and only one

well-defined task.

/**

* Main play routine. Loops until end of play.

*/

public void play()

{

printWelcome();

// Enter the main command loop. Here we repeatedly read

// commands and execute them until the game is over.

boolean finished = false;

while (! finished) {

Command command = parser.getCommand();

finished = processCommand(command);

Code 7.8

Two methods with a

good degree of

cohesion

OFWJ_C07.QXD 2/3/06 2:50 pm Page 211

From a functional point of view we could have just entered the statements from the
printWelcome method directly in the play method, and achieved the same result with-
out defining an extra method and making a method call. The same can, by the way, be
said for the processCommand method that is also invoked in the play method: this
code, too, could have been written directly into the play method.

It is, however, much easier to understand what a segment of code does, and to make
modifications, if short, cohesive methods are used. In the chosen method structure, all
methods are reasonably short and easy to understand, and their names indicate their purposes
quite clearly. These characteristics represent valuable help for a maintenance programmer.

7.11.2 Cohesion of classes

The rule of cohesion of classes states that each class should represent one single, well-
defined entity in the problem domain.

As an example of class cohesion, we now discuss another extension to the zuul project.
We now want to add items to the game. Each room may hold an item, and each item has a
description and a weight. An item’s weight can be used later to determine whether it can
be picked up or not.

A naïve approach would be to add two fields to the Room class: itemDescription and
itemWeight. This could work. We could now specify the item details for each room, and
we could print out the details whenever we enter a room.

This approach, however, does not display a good degree of cohesion: the Room class now
describes both a room and an item. It also suggests that an item is bound to a particular
room, which we might not wish to be the case.

A better design would create a separate class for items, probably called Item. This class
would have fields for a description and weight, and a room would simply hold a reference
to an item object.

212 Chapter 7 � Designing classes212 Chapter 7 � Designing classes

}

System.out.println("Thank you for playing. Good bye.");

}

/**

* Print out the opening message for the player.

*/

private void printWelcome()

{

System.out.println();

System.out.println("Welcome to The World of Zuul!");

System.out.println(

"Zuul is a new, incredibly boring adventure game.");

System.out.println("Type 'help' if you need help.");

System.out.println();

System.out.println(currentRoom.getLongDescription());

}

Code 7.8

Two methods with a

good degree of

cohesion

Concept:

Class cohesion.

A cohesive class

represents one

well-defined entity.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 212

7.11 Cohesion 213

The real benefits of separating rooms and items in the design can be seen if we change
the specification a little: in a further variation of our game, we want to allow not only a
single item in each room, but an unlimited number of items. In the design using a sepa-
rate Item class this is easy: we can create multiple Item objects and store them in a
collection of items in the room.

With the first, naïve approach, this change would be almost impossible to implement.

7.11.3 Cohesion for readability

There are several ways in which high cohesion benefits a design. The two most important
ones are readability and reuse.

The example discussed in Section 7.11.1, cohesion of the printWelcome method, is
clearly an example in which increasing cohesion makes a class more readable and thus
easier to understand and maintain.

The class cohesion example in Section 7.11.2 also has an element of readability. If a sepa-
rate Item class exists, a maintenance programmer will easily recognize where to start
reading code if a change to characteristics of an item is needed. Cohesion of classes also
increases readability of a program.

7.11.4 Cohesion for reuse

The second great advantage of cohesion is a higher potential for reuse.

The class cohesion example in Section 7.11.2 also shows an example of this: by creating
a separate Item class, we can create multiple items, and thus use the same code for more
than a single item.

Reuse is also an important aspect of method cohesion. Consider a method in the Room
class with the following signature:

public Room leaveRoom(String direction)

Exercise 7.20 Extend either your adventure project, or the zuul-better project, so

that a room can contain a single item. Items have a description and a weight. When

creating rooms and setting their exits, items for this game should also be created.

When a player enters a room, information about an item present in this room should

be displayed.

Exercise 7.21 How should the information about an item present in a room be

produced? Which class should produce the string describing the item? Which class

should print it? Why? Explain in writing. If answering this exercise makes you feel you

should change your implementation, go ahead and make the changes.

Exercise 7.22 Modify the project so that a room can hold any number of items.

Use a collection to do this. Make sure the room has an addItem method that places

an item into the room. Make sure all items get shown when a player enters a room.

OFWJ_C07.QXD 2/3/06 2:50 pm Page 213

214 Chapter 7 � Designing classes

This method could return the room in the given direction (so that it can be used as the
new currentRoom), and also print out the description of the new room that we just
entered.

This seems like a possible design, and it can indeed be made to work. In our version,
however, we have separated this task into two methods:

public Room getExit(String direction)

public String getLongDescription()

The first one is responsible for returning the next room, whereas the second one produces
the room’s description.

The advantage of this design is that the separate tasks can be reused more easily. The
getLongDescription method, for example, is now used not only in the goRoom
method, but also in printWelcome and the implementation of the look command. This is
only possible because it displays a high degree of cohesion. Reusing it would not be pos-
sible in the version with the leaveRoom method.

Refactoring

When designing applications we should attempt to think ahead, anticipate possible changes
in the future, and create highly cohesive, loosely coupled classes and methods that make
modifications easy. This is a noble goal, but of course we cannot always anticipate all future
adaptations, and it is not feasible to prepare for all possible extensions we can think of.

This is why refactoring is important.

Refactoring is the activity of restructuring existing classes and methods to adapt them to
changed functionality and requirements. Often, in the lifetime of an application, function-
ality is gradually added. One common effect is that, as a side-effect of this, methods and
classes slowly grow in length.

214 Chapter 7 � Designing classes

Exercise 7.23 Implement a back command. This command does not have a

second word. Entering the back command takes the player into the last room he/she

visited.

Exercise 7.24 Test your new command properly. Do not forget negative testing!

What does your program do if a player types a second word after the back com-

mand? Does it behave sensibly? Are there more cases of negative testing?

Exercise 7.25 What does your program do if you type back twice? Is this behavior

sensible?

Exercise 7.26 Challenge exercise Implement the back command so that using it

repeatedly takes you back several rooms, all the way to the beginning of the game if

used often enough. Use a Stack to do this. (You may need to find out about stacks.

Look at the Java library documentation.)

Concept:

Refactoring is

the activity of

restructuring an

existing design to

maintain a good

class design when

the application is

modified or

extended.

7.12

OFWJ_C07.QXD 2/3/06 2:50 pm Page 214

7.12 Refactoring 215

It is tempting for a maintenance programmer to add some extra code to existing classes or
methods. Doing this for some time, however, decreases the degree of cohesion. When
more and more code is added to a method or a class, it is likely that at some stage it will
represent more than one clearly defined task or entity.

Refactoring is the rethinking and redesigning of class and method structures. Most com-
monly the effect is that classes are split into two, or that methods are divided into two or
more methods. Refactoring can also include the joining of classes or methods into one,
but that case is less common.

7.12.1 Refactoring and testing

Before we provide an example of refactoring, we need to reflect on the fact that when we
refactor a program we are usually proposing to make some potentially large changes to
something that already works. When something is changed there is a likelihood that
errors will be introduced. Therefore it is important to proceed cautiously, and prior to
refactoring we should establish that a set of tests exists for the current version of the pro-
gram. If tests do not exist, then the first stage should be to create some tests that will be
suitable for conducting regression testing on the refactored version. Only when these tests
exist should the refactoring start. Ideally, the refactoring should then follow in two steps:

� The first step is to refactor in order to provide the same functionality as that of the
original version. In other words, we restructure the source code to improve its quality,
not to change or increase its functionality. Once this stage is completed, the regression
tests should be run to ensure that we have not introduced unintended errors.

� The second step is taken only once we have re-established the baseline functionality in
the refactored version. Then we are in a safe position to enhance the program. Once
that has been done, of course, testing will need to be conducted on the new version.

Making several changes at the same time (refactoring and adding new features) makes it
harder to locate the source of problems when they occur.

7.12.2 An example of refactoring

As an example, we shall continue with the extension of adding items to the game. In Sec-
tion 7.11.2 we started adding items, suggesting a structure in which rooms can contain any
number of items. A logical extension to this arrangement is that a player should be able to
pick up items and carry them around. Here is an informal specification of our next goal:

Exercise 7.27 What sort of baseline functionality tests might we wish to establish

on the current version of the game?

Exercise 7.28 How might tests be automated in a program that reads interactive

input? Is it possible to introduce some form of scripting? For instance, could a user’s

input be stored in a file rather than read interactively? What classes would need to be

changed to make this possible?

OFWJ_C07.QXD 2/3/06 2:50 pm Page 215

216 Chapter 7 � Designing classes

� The player can pick up items from the current room.

� The player can carry any number of items, but only up to a maximum weight.

� Some items cannot be picked up.

� The player can drop items in the current room.

To achieve these goals, we can do the following:

� If not already done, we add a class Item to the project. An item has, as discussed
above, a description (a string) and a weight (an integer).

� We should also add a field name to the item class. This will allow us to refer to the
item with a shorter name than the description. If, for instance, there is a book in the
current room, the field values of this item might be:

name: book

description: an old, dusty book bound in grey leather

weight: 1200

If we enter a room, we can print out the item’s description to tell the player what is
there. But, for commands, the name will be easier to use. For instance, the player
might then type take book to pick up the book.

� We can ensure that some items cannot be picked up, by just making them very
heavy (more than a player can carry). Or should we have another boolean field
canBePickedUp? Which do you think is the better design? Does it matter? Try
answering this by thinking about what future changes might be made to the game.

� We add commands take and drop to pick up and drop items. Both commands have an
item name as a second word.

� Somewhere, we have to add a field (holding some form of collection) to store the items
currently carried by the player. We also have to add a field with the maximum weight the
player can carry, so that we can check it each time we try to pick up something. Where
should these go? Once again, think about future extensions to help you make the decision.

This last task is what we will discuss in more detail now, in order to illustrate the process
of refactoring.

The first question to ask ourselves when thinking about how to enable players to carry
items is: Where should we add the fields for the currently carried items and the maximum
weight? A quick look over the existing classes shows that the Game class is really the only
place where it can be fitted in. It cannot be stored in Room, Item, or Command, since there
are many different instances of these classes over time, which are not all always accessible.
It does not make sense in Parser or CommandWords either.

Reinforcing the decision to place these changes in the Game class is the fact that it already
stores the current room (information about where the player is right now), so adding the
current items (information about what the player has) seems to fit with this quite well.

This approach could be made to work. It is, however, not a solution that is well designed.
The Game class is fairly big already, and there is a good argument that it contains too
much as it is. Adding even more does not make this better.

We should ask ourselves again which class or object this information should belong to.
Thinking carefully about the type of information we are adding here (carried items, maximum
weight) we realize that this is information about a player! The logical thing to do (following

216 Chapter 7 � Designing classes

OFWJ_C07.QXD 2/3/06 2:50 pm Page 216

7.12 Refactoring 217

responsibility-driven design guidelines) is to create a Player class. We can then add these
fields to the Player class and create a player object at the start of the game to store the data.

The existing field currentRoom also stores information about the player: the player’s cur-
rent location. Consequently, we should now also move this field into the Player class.

Analyzing it now, it is obvious that this design better fits the principle of responsibility-
driven design. Who should be responsible for storing information about the player? The
Player class, of course.

In the original version we had only a single piece of information for the player – the cur-
rent room. Whether we should have had a Player class even back then is up for
discussion. There are arguments both ways. It would have been nice design, so yes, maybe
we should. But having a class with only a single field and no methods that do anything of
significance might be regarded as overkill.

Sometimes there are gray areas like this where either decision is defensible. But after adding
our new fields, the situation is quite clear. There is now a strong argument for a Player
class. It would store the fields and have methods such as dropItem and pickUpItem
(which can include the weight check and might return false if we cannot carry it).

What we did when we introduced the Player class and moved the currentRoom field
from Game into Player was refactoring. We have restructured the way we represent our
data to achieve a better design under changed requirements.

Programmers not as well trained as us (or just being lazy) might have left the currentRoom
field where it was, seeing that the program worked as it was and there did not seem to be
a great need to make this change. They would end up with a messy class design.

The effect of making the change can be seen if we think one step further ahead. Assume
we now want to extend the game to allow for multiple players.

With our nice new design, this is suddenly very easy. We already have a Player class (the
Game holds a Player object), and it is easy to create several Player objects and store in
Game a collection of players instead of a single player. Each player object would hold its
own current room, items, and maximum weight. Different players could even have
different maximum weights, opening up the even wider concept of having players with
quite different capabilities – their carrying capability being just one of possibly many.

The lazy programmer who left currentRoom in the Game class, however, has a serious
problem now. Since the whole game has only a single current room, current locations of
multiple players cannot be easily stored. Bad design usually bites back later to create
more work for us in the end.

Doing good refactoring is as much about thinking in a certain mindset as it is about techni-
cal skills. While we make changes and extensions to applications, we should regularly
question whether an original class design still represents the best solution. As the function-
ality changes, arguments for or against certain designs change. What was a good design for
a simple application might not be good anymore when some extensions are added.

Recognizing these changes and actually making the refactoring modifications to the
source code usually saves a lot of time and effort in the end. The earlier we clean up our
design, the more work we usually save.

We should be prepared to factor out methods (turn a sequence of statements from the
body of an existing method into a new, independent method) and classes (take parts of a

OFWJ_C07.QXD 2/3/06 2:50 pm Page 217

218 Chapter 7 � Designing classes218 Chapter 7 � Designing classes

class and create a new class from it). Considering refactoring regularly keeps our class
design clean and saves work in the end. Of course, one of the things that will actually
mean that refactoring makes life harder in the long run is if we fail to test adequately the
refactored version against the original version. Whenever we embark on a major refactor-
ing task it is essential to ensure that our existing test coverage is adequate beforehand, and
that it is kept up to date through the refactoring process. Bear this in mind as you attempt
the following exercises.

Refactoring for language independence

One feature of the zuul game that we have not commented on yet is that the user interface
is closely tied to commands written in English. This assumption is embedded in both the
CommandWords class where the list of valid commands is stored, and the Game class
where the processCommand method explicitly compares each command word against a
set of English words. If we wish to change the interface to allow users to use a different
language then we would have to find all the places in the source code where command
words are used and change them. This is a further example of a form of implicit coupling,
which we discussed in Section 7.9.

If we want to have language independence in the program then ideally we should have
just one place in the source code where the actual text of command words is stored and
have everywhere else refer to commands in a language-independent way. A programming
language feature that makes this possible is enumerated types or enums. We will explore
this feature of Java via the zuul-with-enums projects.

Exercise 7.29 Refactor your project to introduce a separate Player class. A

player object should store at least the current room of the player, but you may also

like to store the player’s name or other information.

Exercise 7.30 Implement an extension that allows a player to pick up one single

item. This includes implementing two new commands: take and drop.

Exercise 7.31 Extend your implementation to allow the player to carry any number

of items.

Exercise 7.32 Add a restriction that allows the player to carry items only up to a

specified maximum weight. The maximum weight a player can carry is an attribute of

the player.

Exercise 7.33 Implement an items command that prints out all items currently

carried and their total weight.

Exercise 7.34 Add a magic cookie item to a room. Add an eat cookie command.

If a player finds and eats the magic cookie, it increases the weight that the player can

carry. (You might like to modify this slightly to better fit into your own game scenario.)

7.13

OFWJ_C07.QXD 2/3/06 2:51 pm Page 218

7.13 Refactoring for language independence 219

7.13.1 Enumerated types

Code 7.9 shows a Java enumerated type definition called CommandWord.

In its simplest form an enumerated type definition consists of an outer wrapper that uses the
word enum rather than class, and a body that is simply a list of variable names denoting
the set of values that belong to this type. By convention, these variable names are fully capi-
talized. We never create objects of an enumerated type. In effect, each name within the type
definition represents a unique instance of the type that has already been created for us to
use. We refer to these instances as CommandWord.GO, CommandWord.QUIT, etc. Although
the syntax for using them is similar, it is important to avoid thinking of these values as being
like the numeric class constants we discussed in section 5.13. Despite the simplicity of their
definition, enumerated type values are proper objects and are not the same as integers.

How can we use the CommandWord type to make a step toward decoupling the game logic
of zuul from a particular natural language? One of the first improvements we can make is
to the following series of tests in the processCommand method of Game:

if (commandWord.equals("help")) {

printHelp();

}

else if (commandWord.equals("go")) {

goRoom(command);

}

else if (commandWord.equals("quit")) {

wantToQuit = quit(command);

}

If commandWord is made to be of type CommandWord rather than String then this can
be rewritten as:

if (commandWord == CommandWord.HELP) {

printHelp();

}

else if (commandWord == CommandWord.GO) {

goRoom(command);

}

else if (commandWord == CommandWord.QUIT) {

wantToQuit = quit(command);

}

/**

* Representations for all the valid command words for the game.

*

* @author Michael Kolling and David J. Barnes

* @version 2006.03.30

*/

public enum CommandWord

{

// A value for each command word, plus one for unrecognized

// commands.

GO, QUIT, HELP, UNKNOWN;

}

Code 7.9

An enumerated

type for command

words

OFWJ_C07.QXD 2/3/06 2:51 pm Page 219

Now we just have to arrange for the user’s typed commands to be mapped to the corre-
sponding CommandWord values. Open the zuul-with-enums-v1 project to see how we have
done this. The most significant change can be found in the CommandWords class. Instead
of using an array of strings to define the valid commands we now use a map between
strings and CommandWord objects:

public CommandWords()

{

validCommands = new HashMap<String, CommandWord>();

validCommands.put("go", CommandWord.GO);

validCommands.put("help", CommandWord.HELP);

validCommands.put("quit", CommandWord.QUIT);

}

The command typed by a user can now easily be converted to its corresponding enumer-
ated type value.

7.13.2 Further decoupling of the command interface

The CommandWord type has allowed us to make a significant decoupling of the user
interface language from the game logic and it is almost completely possible to translate
the commands into another language just by editing the CommandWords class. (At some
stage, we should also translate the room descriptions and other output strings, probably by
reading them from a file, but we shall leave this until later.) There is one further piece of
decoupling of the command words we would like to perform. Currently, whenever a new
command is introduced into the game we must add a new value to CommandWord and an
association between that value and the user’s text in the CommandWords classes. It would
be helpful if we could make the CommandWord type self-contained. In effect, move the
text:value association from CommandWords to CommandWord.

220 Chapter 7 � Designing classes220 Chapter 7 � Designing classes

Exercise 7.35 Review the source code of the zuul-with-enums-v1 project to see

how it uses the CommandWord type. The classes Command, CommandWords, Game,

and Parser have all been adapted from the zuul-better version to accommodate this

change. Check that the program still works as you would expect.

Exercise 7.36 Add a look command to the game, along the lines described in

Section 7.9.

Exercise 7.37 ‘Translate’ the game to use different command words from go and

quit for the GO and QUIT commands. These could be from a real language or just

made up words. Do you only have to edit the CommandWords class to make this

change work?

Exercise 7.38 Choose a different command instead of help and check that it

works correctly. After you have made your changes, what do you notice about the

welcome message that is printed when the game starts?

Exercise 7.39 In a new project, define your own enumerated type called

Position with values TOP, MIDDLE, and BOTTOM.

OFWJ_C07.QXD 2/3/06 2:51 pm Page 220

Java allows enumerated type definitions to contain much more than a list of the type’s
values. We will not explore this feature in much detail but just give you a flavor of what is
possible. Code 7.10 shows an enhanced CommandWord type which looks quite similar to
an ordinary class definition. This can be found in the zuul-with-enums-v2 project.

The main points to note about this new version of CommandWord are that:

� Each type value is followed by a parameter value – in this case the text of the com-
mand associated with that value.

� The type definition includes a constructor. This does not have the word public in its
header. Enumerated type constructors are never public because we do not create the
instances. The parameter associated with each type value is passed to this constructor.

� The type definition includes a field, commandString. The constructor stores the com-
mand string in this field.

� A toString method has been used to return the text associated with a particular type
value.

7.13 Refactoring for language independence 221

/**

* Representations for all the valid command words for the game

* along with a string in a particular language.

*

* @author Michael Kolling and David J. Barnes

* @version 2006.03.30

*/

public enum CommandWord

{

// A value for each command word along with its

// corresponding user interface string.

GO("go"), QUIT("quit"), HELP("help"), UNKNOWN("?");

// The command string.

private String commandString;

/**

* Initialize with the corresponding command word.

* @param commandString The command string.

*/

CommandWord(String commandString)

{

this.commandString = commandString;

}

/**

* @return The command word as a string.

*/

public String toString()

{

return commandString;

}

}

Code 7.10

Associating

command strings

with enumerated

type values

OFWJ_C07.QXD 2/3/06 2:51 pm Page 221

With the text of the commands stored in the CommandWord type, the CommandWords
class in zuul-with-enums-v2 uses a different way to create its map between text and enu-
merated values:

validCommands = new HashMap<String, CommandWord>();

for(CommandWord command : CommandWord.values()) {

if(command != CommandWord.UNKNOWN) {

validCommands.put(command.toString(), command);

}

}

Every enumerated type defines a values method that returns an array filled with the
value objects from the type. The code above iterates over the array and calls the
toString method to obtain the command string associated with each value.

Design guidelines

An often-heard piece of advice to beginners about writing good object-oriented programs
is, ‘Don’t put too much into a single method,’ or ‘Don’t put everything into one class.’
Both suggestions have merit, but frequently lead to the counter-questions, ‘How long
should a method be?’ or ‘How long should a class be?’

After the discussion in this chapter, these questions can now be answered in terms of
cohesion and coupling. A method is too long if it does more than one logical task. A class
is too complex if it represents more than one logical entity.

You will notice that these answers do not give clear-cut rules that specify what exactly to
do. Terms such as one logical task are still open to interpretation, and different program-
mers will decide differently in many situations.

These are guidelines (not cast-in-stone rules). Keeping these guidelines in mind, though,
will significantly improve your class design and enable you to master more complex
problems and write better and more interesting programs.

222 Chapter 7 � Designing classes

It is important to understand the following exercises as suggestions, not as fixed

specifications. This game has many possible ways in which it can be extended, and

you are encouraged to invent your own extensions. You do not need to do all the

exercises here to create an interesting game; you may want to do more, or you may

want to do different ones. Here are some suggestions to get you started.

Exercise 7.40 Add your own look command to zuul-with-enums-v2. Do you only

need to change the CommandWord type?

Exercise 7.41 Change the word associated with the help command in

CommandWord. Is this change automatically reflected in the welcome text when you

start the game? Take a look at the printWelcome method in the Game class to see

how this has been achieved.

7.14

OFWJ_C07.QXD 2/3/06 2:51 pm Page 222

Executing without BlueJ

When our game is finished, we may want to pass it on to others to play. To do this, it
would be nice if people could play the game without the need to start BlueJ. To be able to
do this, we need one more thing: class methods, which in Java are also referred to as
static methods.

7.15 Executing without BlueJ 223

Exercise 7.42 Add some form of time limit to your game. If a certain task is not

completed in a specified time, the player loses. A time limit can easily be imple-

mented by counting the number of moves or the number of entered commands. You

do not need to use real time.

Exercise 7.43 Implement a trap door somewhere (or some other form of door that

you can only cross one way).

Exercise 7.44 Add a beamer to the game. A beamer is a device that can be

charged, and fired. When you charge the beamer, it memorizes the current room.

When you fire the beamer, it transports you immediately back to the room it was

charged in. The beamer could either be standard equipment, or an item that the

player can find. Of course, you need commands to charge and fire the beamer.

Exercise 7.45 Add locked doors to your game. The player needs to find (or other-

wise obtain) a key to open a door.

Exercise 7.46 Add a transporter room. Whenever the player enters this room,

he/she is randomly transported into one of the other rooms. Note: Coming up with a

good design for this task is not trivial. It might be interesting to discuss design alter-

natives for this with other students. (We discuss design alternatives for this task at the

end of Chapter 9. The adventurous or advanced reader may want to skip ahead and

have a look.)

Exercise 7.47 Challenge exercise In the processCommand method in Game

there is a sequence of if statements to dispatch commands when a command word

is recognized. This is not a very nice design, since every time we add a command,

we have to add a case here in this if statement. Can you improve this design? Design

the classes so that handling of commands is more modular, and new commands can

be added more easily. Implement it. Test it.

Exercise 7.48 Add characters to the game. Characters are similar to items, but

they can talk. They speak some text when you first meet them, and they may give you

some help if you give them the right item.

Exercise 7.49 Add moving characters. These are like other characters, but every

time the player types a command, these characters may move into an adjoining room.

7.15

OFWJ_C07.QXD 6/3/06 11:23 am Page 223

7.15.1 Class methods

So far, all methods we have seen have been instance methods: they are invoked on an
instance of a class. What distinguishes class methods from instance methods is that class
methods can be invoked without an instance – having the class is enough.

In Section 5.13, we discussed class variables. Class methods are conceptually related and
use a related syntax (the key word static in Java). Just as class variables belong to the
class rather than to an instance, so do class methods.

A class method is defined by adding the key word static in front of the type name in
the method’s signature:

public static int getNumberOfDaysThisMonth()

{

...

}

Such a method can then be called by specifying the name of the class in which it is
defined before the dot in the usual dot notation. If, for instance, the above method is
defined in a class called Calendar, the following call invokes it:

int days = Calendar.getNumberOfDaysThisMonth();

Note that the name of the class is used before the dot – no object has been created.

7.15.2 The main method

If we want to start a Java application without BlueJ, we need to use a class method. In
BlueJ, we typically create an object and invoke one of its methods, but without BlueJ an
application starts without any object in existence. Classes are the only things we have ini-
tially, so the first method that can be invoked must be a class method.

The Java definition for starting applications is quite simple: the user specifies the class
that should be started, and the Java system will then invoke a method called main in that
class. This method must have a specific signature. If such a method does not exist in that
class, an error is reported. Appendix E describes the details of this method and the com-
mands needed to start the Java system without BlueJ.

224 Chapter 7 � Designing classes

Exercise 7.50 Read the class documentation for class Math in the package

java.lang. It contains many static methods. Find the method that computes the

maximum of two integer numbers. What is its signature?

Exercise 7.51 Why do you think the methods in the Math class are static? Could

they be written as instance methods?

Exercise 7.52 Write a test class that has a method to test how long it takes to

count from 1 to 100 in a loop. You can use the method currentTimeMillis from

class System to help with the time measurement.

OFWJ_C07.QXD 2/3/06 2:51 pm Page 224

7.15.3 Limitations of class methods

Because class methods are associated with a class rather than an instance, they have two
important limitations. The first limitation is that a class method may not access any
instance fields defined in the class. This is logical, because instance fields are associated
with individual objects. Instead, class methods are restricted to accessing class variables
from their class. The second limitation is like the first: a class method may not call an
instance method from the class. A class method may only invoke other class methods
defined in its class.

You will find that we make very little use of class methods in the examples in this book.

Summary

In this chapter we have discussed what are often called the non-functional aspects of an
application. Here, the issue is not so much to get a program to perform a certain task, but
to do this with well-designed classes.

Good class design can make a huge difference when an application needs to be corrected,
modified, or extended. It also allows us to reuse parts of the application in other contexts
(for example, for other projects), and thus creates benefits later.

There are two key concepts under which class design can be evaluated: coupling and
cohesion. Coupling refers to the interconnectedness of classes; cohesion to modulariz-
ation into appropriate units. Good design exhibits loose coupling and high cohesion.

One way to achieve a good structure is to follow a process of responsibility-driven design.
Whenever we add a function to the application, we try to identify which class should be
responsible for which part of the task.

When extending a program, we use regular refactoring to adapt the design to changing
requirements, and to ensure that classes and methods remain cohesive and loosely coupled.

Terms introduced in this chapter

code duplication, coupling, cohesion, encapsulation, responsibility-driven

design, implicit coupling, refactoring, class method

7.16 Summary 225

Exercise 7.53 Find out the details of the main method and add such a method to

your Game class. The method should create a Game object and invoke the play

method on it. Test the main method by invoking it from BlueJ. Class methods can be

invoked from the class’s popup menu.

Exercise 7.54 Execute your game without BlueJ.

7.16

OFWJ_C07.QXD 2/3/06 2:51 pm Page 225

226 Chapter 7 � Designing classes

Exercise 7.55 Without using BlueJ, edit your TechSupport project from Chapter 5

so that it can execute without BlueJ. Then run it from a command line.

Exercise 7.56 Can you call a static method from an instance method? Can you

call an instance method from a static method? Can you call a static method from a

static method? Answer these questions, then create a test to check your answers

and try it. Explain in detail your answers and observations.

Exercise 7.57 Can a class count how many instances have been created of that

class? What is needed to do this? Write some code fragments that illustrate what

needs to be done. Assume you want a static method called numberOfInstances

that returns the number of instances created.

Concept summary

� coupling The term coupling describes the interconnectedness of classes. We strive for

loose coupling in a system – that is, a system where each class is largely independent

and communicates with other classes via a small, well defined interface.

� cohesion The expression cohesion describes how well a unit of code maps to a logical

task or entity. In a highly cohesive system each unit of code (method, class, or module) is

responsible for a well defined task or entity. Good class design exhibits a high degree of

cohesion.

� code duplication Code duplication (having the same segment of code in an application

more than once) is a sign of bad design. It should be avoided.

� encapsulation Proper encapsulation in classes reduces coupling, and thus leads to a

better design.

� responsibility-driven design Responsibility-driven design is the process of designing

classes by assigning well-defined responsibilities to each class. This process can be

used to determine which class should implement which part of an application function.

� localizing change One of the main goals of a good class design is that of localizing

change: making changes to one class should have minimal effects on other classes.

� method cohesion A cohesive method is responsible for one and only one well-defined

task.

� class cohesion A cohesive class represents one well-defined entity.

� refactoring Refactoring is the activity of restructuring an existing design to maintain a

good class design when the application is modified or extended.

OFWJ_C07.QXD 2/3/06 2:51 pm Page 226

